- •Среды передачи данных в сети и их параметры.
- •3) Использование пакетов при обмене данными в сети. Структура пакета. Адресация пакетов.
- •4) Протоколы обмена данными в сети и их виды
- •5) Основные методы доступа в сети (Ethernet, Token Ring, fddi) и их особенности.
- •6. Языки манипулирования данными.
- •7. Основные операции реляционной алгебры.
- •10 Назначение и основные принципы, используемые в case-технологиях проектирования бд.
- •11 Жизненный цикл промышленных программных изделий. Основные понятия. Этапы. Назначение этапов.
- •12. Программное обеспечение (по) сапр. Определения. Классификация. Виды. Функции. Принципы проектирования по. Методы проектирования программ. Показатели качества по программное обеспечение и его виды
- •Виды программного обеспечения
- •Виды по
- •13. Программный документооборот. Виды документов. Состав. Правила построения
- •Классификация документов
- •14. Объектно-ориентированный подход к программированию. Особенности. Термины и понятия. Стиль программирования. Виртуальные правила программирования. Векторное свойство. Поля и записи. Процедурный тип
- •15. Понятие информационной безопасности. Объекты защиты. Угрозы безопасности.
- •16. Нежелательные излучения технических средств. Образование технических каналов утечки информации.
- •17. Технические средства информационной защиты. Защита телефонных линий. Защита компьютерных сетей.
- •18. Криптографические методы защиты информации. Одно - и двухключевые системы. Алгоритм криптографического преобразования rsa. Алгоритм шифрования des.
- •19. Системы управления и контроля доступа.
- •20. Защита компьютерных систем. Компьютерные вирусы, классификация. Антивирусные программы. Виды вирусов Червь
- •Троянская программа (троянский конь, троян)
- •Программы – шпионы
- •Программы – блокировщики (баннеры)
- •Антивирусы для сайтов
- •21. Формы представления информации. Преобразование непрерывных сообщений.
- •22. Дискретизация непрерывного сообщения. Теорема Котельникова. Преимущества дискретной формы.
- •Равномерная дискретизация. Теорема Котельникова
- •23. Понятие энтропии. Условная энтропия. Статистическое определение информации. Энтропия и информация.
- •Энтропия — это количество информации, приходящейся на одно элементарное сообщение источника, вырабатывающего статистически независимые сообщения. Условная энтропия
- •24. Представление информации в цифровых автоматах. Информация и алфавит.
- •25. Дисплей. Устройство и функционирование в текстовом и графическом режимах. Устройства указания элементов изображения.
- •26. Устройства печати. Назначения и классификация. Знакосинтезирующие печатающие устройства ударного и безударного типов. Струйные и лазерные печатающие устройства.
- •27. Устройства сканирования. Ручные и планшетные. Сканеры изображений
- •Планшетные сканеры для изображений
- •28. Внешние запоминающие устройства на магнитных носителях. Назначение и классификация. Накопители на гибких магнитных дисках и дисках типа «винчестер».
- •29. Постоянно-запоминающие устройства (пзу); основные элементы пзу; организация пзу.
- •По разновидностям микросхем пзу
- •30. Адресация памяти; организация виртуальной памяти; страничная адресация памяти; сегментация памяти.
- •31. Симметричные мультипроцессорные системы. Архитектура smp-системы.
- •32. Аксиомы Армстронга. Декомпозиция схем отношений. Декомпозиция без потерь.
- •33. Теорема Хита. Нормализация отношений. Нормальные формы схем отношений: первая, вторая, третья, Бойса-Кодда.
- •34. Защита данных, целостность и сохранность бд. Управление доступом к бд. Резервное копирование и восстановление бд.
- •2. Литералы
- •36. Классификация информационно-вычислительных сетей. Одноранговые сети и сети ‘клиент-сервер’.
- •37. Уровни и протоколы. Кабельные и беспроводные среды передачи данных.
- •38) Коммутация каналов, сообщений, пакетов. Виртуальные каналы.
- •Глобальные сети с коммутацией каналов и пакетов
- •39) Эталонная модель osi взаимосвязи открытых систем. Иерархия уровней, протоколы, стеки протоколов.
- •Прикладной уровень[править | править вики-текст]
- •Уровень представления[править | править вики-текст]
- •Сеансовый уровень
- •Транспортный уровень
- •Сетевой уровень]
- •Канальный уровень
- •Физический уровень
- •40. Службы с постоянным соединением и без постоянного соединения.
23. Понятие энтропии. Условная энтропия. Статистическое определение информации. Энтропия и информация.
Информацио́нная энтропи́я — мера неопределённости или непредсказуемости информации, неопределённость появления какого-либо символа первичного алфавита. При отсутствии информационных потерь численно равна количеству информации на символ передаваемого сообщения.
Энтропия — это количество информации, приходящейся на одно элементарное сообщение источника, вырабатывающего статистически независимые сообщения. Условная энтропия
Если следование символов алфавита не независимо (например, во французском языке после буквы «q» почти всегда следует «u», а после слова «передовик» в советских газетах обычно следовало слово «производства» или «труда»), количество информации, которую несёт последовательность таких символов (а, следовательно, и энтропия), очевидно, меньше. Для учёта таких фактов используется условная энтропия.
Условной энтропией первого порядка (аналогично для Марковской модели первого порядка) называется энтропия для алфавита, где известны вероятности появления одной буквы после другой (то есть, вероятности двухбуквенных сочетаний)
Определение понятия - информация - не менее сложно, чем определение понятий: хаос и порядок. В книге (Чернавский, 2001) в начале главы - Основные понятия динамической теории информации - приведено более двадцати определений информации. Среди них есть, несомненно, очень интересные. Отметим, лишь определение Генри Кастлера: Информация есть случайный и запомненный выбор одного из нескольких возможных и равноправных -. Однако, ни в этом определении, ни в других нет указания ни на способ количественной оценки информации, ни на определение ее ценности. Все определения в той или иной мере основаны на интуиции. Ясно лишь, что количественное определение информации может быть дано лишь на основе статистической теории. Основы количественной теории информации заложены в классических работах Шеннона. Шеннон предложил два количественных способа определения информации. Первое соответствует определениям энтропии по Больцману и Гиббсу. Большая общность определения Шеннона в том, что оно не связано с механической моделью вещества как это имеет место в статистической теории Больцмана и Гиббса. Шеннон использует распределения значений величин, которые не имеют физических аналогов. Именно такие величины существенны, в частности, в теории связи, одним из основоположников которых был Клодт Шеннон. Энтропия, введенная Шенноном, получила название S-информация. Как и энтропия (S) Больцмана-Гиббса она служит мерой степени неопределенности при выбранном уровне статистического описания рассматриваемой системы. По этой причине и оправдан термин S-информация. Такое определение, хотя и широко используется в литературе, все же не является достаточным в теории информации и, тем более, при исследовании информативности открытых систем. На примере критерия S-теорема было показано, что относительная мера степени упорядоченности состояний открытых систем определяется (с учетом описанной выше перенормировки к заданному значению средней энергии) разностью энтропий. В связи с этим для открытых систем более предпочтительным является другое, также предложенное К. Шенноном, определение информации. Суть его состоит в следующем. Информация выражается разностью безусловной и условной энтропий, тем самым, с соответствующим изменением степени неопределенности при статистическом задании состояний рассматриваемой системы.
Информацио́нная энтропи́я — мера неопределённости или непредсказуемости информации, неопределённость появления какого-либо символа первичного алфавита. При отсутствии информационных потерь численно равна количеству информациина символ передаваемого сообщения
