Опытные конкуренты
Легендарный Quake на Riva128
Но 3Dfx не была единоличным владельцем рынка. Появившаяся еще в 1985 году компания ATI, начав с «клонирования» IBM 8514/A, имела опыт и достаточную известность к появлению первого адаптера от 3Dfx. К 1995 году у нее был уже Rage адаптер, который выдавал отличную 2D картинку, имел возможности 3D и мог обрабатывать сжатый видеопоток MPEG-1. Выпуск 3D Rage II произошел в середине 1996 года. Этот ускоритель был в 2 раза быстрее предшественника и обрабатывал уже формат MPEG-2 (DVD). У ускорителя была поддержка Direct3D и OpenGL (частично). На борту он нес 8 Мб SDRAM, а процессор и память имели частоту 60 и 83 МГц соответственно. Несмотря на заметный недостаток в производительности в 3D-рендеринге, карта имела отличное 2D-изображение и могла аппаратно ускорять видео на начальном уровне.
Появившаяся на пару лет раньше 3Dfx, компания NVIDIA в 1995 году выпустила свой первый, хоть и провальный, продукт NV1. Он совмещал 3D-ускоритель, 2D-адаптер, а также адаптер звука и порт для геймпада Sega Saturn. Он был дорогим, и архитектура была у него странная: 3D появлялось из кривых третьего порядка, а не из полигонов. Для создателей игр этот подход был слишком оригинален и сулил немало трудностей в создании движка для игры. Ну а когда появился Direct3D, NV1 окончательно канул в лету.
Несмотря на это и на потери в сотрудниках и деньгах, NVIDIA смогла выпустить совсем другой продукт, названный NVIDIA Riva 128, базировавшийся на чипе NV3 и имевший 4 Мб (а в версии 128ZX — 8мб) SDRAM, шину в 128 бит и рабочую частоту в 100 МГц. Производительность в 3D у него была на уровне Voodoo Graphics, и выпускался он в 2 вариантах: PCI и AGP, который не поддерживали продукты 3Dfx. Riva 128 помог NVIDIA не стать банкротом. Однако, ничья у 3Dfx и NVIDIA была всего лишь в непопулярном в то время Direct3D.
То, что на рынке появлялись все более новые и совершенные 3D-игры и видеоплаты, послужило поводом создания более совершенных и быстрых видеокарт. Вехой истории видеокарт был 1998 год, который стал годом рождения адаптера Voodoo2, обладавшего 8 или 12 Мб памяти EDO DRAM на борту и работавший на частоте в 100 МГц.
Voodoo2 с первым в мире SLI
Архитектура Voodoo2 была практически такая же, как и в Voodoo за исключением нескольких особенностей. Первой особенностью являлся дополнительный текстурный блок, с помощью которого за 1 проход рендеринга можно было накладывать до двух текстур за проход, что гораздо увеличило производительность. Вторая особенность – картинка, выводимая адаптером. Разрешение картинки достигало 1024*768 пикселей при 12 Мб памяти и 800*600 в случае с 8 Мб памяти при режиме цвета в 16 бит. Но главное инновацией был режим SLI, который позволял совместно работать сразу двум Voodoo2. Эта система была очень и очень дорогостоящей, однако аналогов у фирм-конкурентов не было и в помине, а производительность была невероятной.
Мощнейшая конструкция: две Voodoo2 в режиме SLI
В этом году NVIDIA не смогла нагнать 3Dfx, но появившаяся в том году Riva TNT (NV4) стала толчком к успеху компании. За 2 года специалисты NVIDIA создали новую архитектуру, которая дала RIVA TNT 2 конвейера для рендеринга, то есть она так же, как и Voodoo2 накладывала 2 текстуры за проход. RIVA TNT работала на частоте 90 МГц, а память у нее была SDRAM, объем которой был 16 Мб.
RIVA TNT от NVIDIA
Глубина цвета у продукта NVIDIA была 32 бита, однако производительность при этом режиме уменьшалась аж в 2 раза, что было негативно встречено покупателями. Несмотря на это RIVA TNT положила начало рендерингу в 32-битном цвете, и вскоре появились модели, которые давали приемлемую производительность в этом режиме. Еще у RIVA TNT была возможность работы с текстурами 1024*1024 пикселей, а для Voodoo2 максимумом были текстуры размером 256*256 точек.
Развитие в те годы библиотеки Glide от 3Dfx было серьезной проблемой для NVIDIA, помощь в решении которой оказывала, сама того не зная, Microsoft, активно распространявшая Direct3D.
Компания ATI пыталась не отставать от своих конкурентов и выпустила в 1998 году свою 3D Rage Pro, которая не имела особого успеха и преимущества перед конкурентами. Единственное, чем могла похвастаться эта видеокарта, так это производительность при обработке сжатого потока DVD. Производительность в 3D у этого продукта была не лучше видеокарт предыдущего поколения, а поддержка OpenGL была всего лишь «для галочки». По этим причинам 3D Rage Pro почти никак не была оценена потребителями и стала всего лишь хорошим 2D-адаптером.
К слову о 2D. В те годы было множество производителей 2D-адаптеров, лидером среди которых была фирма Matrox, которая представила в 1998 году свой адаптер, предназначенный как для 2D, так и для 3D. Этот чип полностью поддерживал 3D-рендеринг и мог держать конкуренцию с Riva TNT от NVIDIA в плане производительности.
G200 обладал великолепной производительностью в 2D, и, помимо этого, обеспечивал высокое качество рендеринга в 3D при 16 и 32 битах цвета. Рабочей частотой для G200 являлись от 84 до 90 МГц, он оснащался двумя шинами данных в 64 бита каждая. Обеспечивая такую же пропускную способность, данное решение давало меньше латентности по сравнению с обычной 128-битной шиной. К тому же, благодаря технологии DIME, адаптер мог хранить текстуры с разрешением до 2048*2048 пикселей в системной памяти, а это решение дало возможность остановиться на объеме видеопамяти в 8 Мб, что помогло продукту стать дешевле.
3D Rage Pro с разъемом для дополнительно подключаемой памяти
На закате 90-х лидерами производства видеокарт были 3Dfx, занимавшая прочное первое место, за ним следовала NVIDIA, ну а далее их пыталась догнать толпа других производителей (среди которых выделялись ATI, Matrox и S3), которые на то время были статистами. Определяющим стал 1999 год.
В начале года были анонсированы Voodoo3, G400, Rage 128 и Riva TNT2. Рабочая частота у детища 3Dfx была 183 МГц и этот адаптер поддерживал SLI. Однако технологические новинки обошли стороной адаптер от 3Dfx, у которого были возможности 2D-адаптеров, однако у него был всего один конвейер для рендеринга и он не поддерживал 32 бита цвета и текстуры большого разрешение.
Voodoo 3 от 3Dfx
Ответом от NVIDIA стал чип NV5, устанавливавшийся в TNT2. Главным для NVIDIA было соответствие технологической новизне. Таким образом Riva TNT2 первой получила поддержку AGP 4x, обеспечивала неплохую производительность рендеринга при 32 битах цвета, а работала она на частоте до 150 МГц и 183 МГц для памяти. На то время TNT2 была полностью конкурентоспособным соперником для Voodoo3. Таким образом, безоговорочное лидерство 3Dfx на данном этапе истории видеокарт оказалось под сомнением.
Не отставать от гигантов смогла и Matrox, выпустившая G400. Технологии компании, которые были внедрены в чип G200, получили развитие. У G200 были две шины в 128 бит каждая, частотой в 125-150 МГц, и шину памяти в 128 бит с частотой 166-200 МГц. Новинкой стала технология EMBM (Environment mapped Bump mapping), которая стала аппаратной поддержкой эффектов рельефности текстур. Благодаря ей графика вышла на принципиально новый уровень.
Matrox Millenium G400MAX и ее два разъема для подключения мониторов
Представление технологии EMBM
Ко всему прочему у G400 впервые появилась поддержка двух мониторов. Таким образом G400 смогла на время выйти на первое место среди видеокарт. К сожалению, G400 теряла производительность в работе с OpenGL играми, а большинство игр того времени не поддерживали Direct3D.
ATI, все еще отстававшая от лидеров, выпустила достаточно интересный для геймеров Rage 128. Он был гораздо дешевле новинок от NVIDIA и 3Dfx, однако скорость рендеринга при 32 битах цвета была выше RivaTNT, а также чип получил поддержку OpenGL и Direct3D. Таким образом дела у ATI пошли гораздо лучше.
Небольшой рывок от ATI: их Rage 128
К концу 1999 года наступил еще один этап противостояния лидеров производства видеокарт. 3Dfx запустил VSA-100, который должен был исправить отставания в технологическом плане, NVIDIA готовила NV10, обещавший стать «сюрпризом», а ATI и S3 пытались прорваться на передовые позиции своими Rage Fury MAXX и Savage 2000 соответственно. Что же предлагали пользователям эти компании?
VSA-100 обладала технологией T-Buffer, которая обеспечивала постобработку изображения использующую кинематографические спецэффекты. Полноэкранное сглаживание (Full-scene Anti-aliasing), размытие в движении (Motion Blur), глубина резкости (Depth Of Field) и мягкие тени (Soft Shadows) должны были улучшить качество картинки без падения производительности.
Преимуществом NVIDIA стала технология расчета трансформации и освещения (Transform and Lighting, T&L). С использованием этой технологии с центрального процессора снималась часть задач по расчету вершин треугольников, обеспечивая тем самым прирост производительности в играх.
ATI Rage Fury MAXX был по сути своей соединением двух Rage 128 Pro на одной плате, которые формировали кадры по очереди. Стоимость должна была стать огромной.
Слишком дорогая ATI Rage Fury MAXX
S3 Savage 2000 обладал T&L, как и продукт NVIDIA, у него была передовая технология сжатия текстур. Этот адаптер планировался как дешевая, более технологичная альтернатива Voodoo3, способная вытеснить NVIDIA на второй план.
На деле же все оказалось совсем не так. 3Dfx не успела выпустить свои Voodoo4, Voodoo5 и Voodoo6 до лета 2000 года. А вот NVIDIA смогла к тому времени вывести в свет свой NV15, который был гораздо мощнее Voodoo6. Voodoo 4 и Voodoo5, обладавшие одним чипом серьезно проигрывали конкурентам в плане производительности, а двух- и четырехчиповые Voodoo5 были дорогостоящими и изрядно грелись. Это явилось ударом для 3Dfx, которая не так давно была флагманом производства видеокарт. Потерю лидирующей позиции сразу заметили кредиторы.
Шумный и совсем не быстрый Voodoo5 с 4 чипами
Выход Savage 2000 от S3 состоялся немного позднее. T&L и сжатие текстур на самом деле хорошо работали и давали увеличение производительности, но только при поддержке этих технологий приложениями. Таким образом при отсутствии данной поддержке Savage 2000 серьезно проигрывал конкурентам, а S3 совершенно не интересовал создателей игр. Помимо прочего, у этого продукта были большие проблемы с установкой драйверов, а также со сравнительно низкой производительностью блока T&L. Несмотря на это, технология S3TC, которая занималась сжатием текстур, заинтересовала компанию Microsoft, и они выкупили ее и лицензировали под названием DXTC. Соответственно, видеокарты всех компаний смогли получить эту технологию.
Адаптер от ATI в целом стал удачным решением, но не для своей цены. К тому же для него было очень сложно написать драйвер, который программисты ATI смогли выпустить лишь через несколько месяцев после того, как появился сам адаптер.
Лучше всех стал адаптер NVIDIA. GeForce 256 смог опередить все другие адаптеры за счет отличной функциональности. У него было четыре конвейера рендеринга, рабочая частота 120 МГц и 32 Мб памяти (с частотой 166 МГц и 128-битной шиной) SDRAM (которая с 2000 года стала DDR SDRAM). Не забыли в NVIDIDA и про T&L, который начинали поддерживать все выходящие игры.
Великолепная GeForce 256
К сожалению, свой штрих в этот этап истории видеокарт не смогла вписать Matrox. Они не последовали принципу выпуска новых адаптеров каждые 6 месяцев, а G400 проигрывал GeForce из-за плохой производительности в OpenGL, а также пресловутого T&L. Так, G400 стал востребованным лишь теми, кому нужно было использовать для работы или игры 2 монитора. У Matrox просто-напросто кончились идеи.
