- •Что такое исследовательские задачи
- •Содержание книги
- •1. Технологии проведения исследовательских работ.
- •Технологии
- •1. Исследовательские задачи на уроках: начало
- •2. Интенсивная работа над исследовательскими задачами в аудиторное время
- •3. Индивидуальная работа в свободное время с консультациями учителя
- •Истории
- •Задача про «пифагоров кирпич»
- •Две исследовательские работы
- •Из опыта учебно-исследовательской деятельности учащихся в лицее 1511 при мифи
- •Работы Квадраты на клетчатой бумаге
- •Простые числа и представимость в виде суммы двух квадратов.
- •Задача о размене монет
- •«Не больше половины»
- •Теорема 1.
- •Доказательство.
- •Теорема 2.
- •Доказательство.
- •Задача о мудрецах у людоедов
- •Рубрикация задач
- •О формулировках задач и подсказках
- •О комментариях
- •Авторство
- •Арифметика
- •1. Замечательные числа
- •2. Прямоугольники с заданной площадью
- •3. Разложение числа
- •4. Суперкомпьютер
- •5. Диагонали прямоугольников
- •6. Задача о размене
- •7. Складные квадраты
- •8. Поиск чисел с заданным количеством делителей
- •9. Разложения дробей
- •13. Многочлен с заданным нулём
- •14. Иррациональные корни
- •15. Количество решений
- •16. Как увидеть симметрию многочлена?
- •17. Исследование графиков линейных функций на плоскости параметров (k ; b)
- •18. Диофантово уравнение а.А. Маркова
- •19. Периодическая последовательность
- •Геометрия
- •20. Оси куба
- •26. «Двуправильные» шестиугольники
- •27. Замечательные точки
- •28. Сложение фигур
- •33. Число турниров
- •34. Число циклов
- •39. Игра в полоску
- •40. Не больше половины
- •41. Ладья – ферзь
- •42. Угадайка
- •43. Эволюция клеток
- •44. Мудрецы у людоедов
- •45. Сумма кубов цифр
- •46. Задача Иосифа Флавия
- •47. Обезьяна и кокосы
- •48. Игра Ним
- •Комментарии арифметика
- •1. Замечательные числа
- •2. Прямоугольники с заданной площадью
- •3. Разложение числа
- •4. Суперкомпьютер
- •5. Диагонали прямоугольников
- •6. Задача о размене
- •7. Складные квадраты
- •8. Поиск чисел с заданным количеством делителей
- •9. Разложение дробей
- •10. Периодические последовательности
- •Алгебра
- •11. Классификация графиков дробно-квадратичных функций
- •12. Симметрические многочлены
- •13. Многочлен с заданным нулём
- •14. Иррациональные корни
- •15. Количество решений
- •16. Как увидеть симметрию многочлена?
- •17. Исследование графиков линейных функций на плоскости параметров (k ; b).
- •18. Диофантово уравнение а.А. Маркова
- •Геометрия
- •20. Оси куба
- •22. Формула Пика
- •23. Разбиение многоугольника на равновеликие треугольники
- •24. Восстановление многоугольника
- •25. Равноугольные шестиугольники и равносторонние шестиугольники
- •26. «Двуправильные» шестиугольники
- •27. Замечательные точки
- •28. Сложение фигур
- •Комбинаторика
- •29. Разрезы
- •30. Раскраски
- •31. Сколько всего прямоугольников?
- •32. Замок
- •33. Число турниров
- •34. Число циклов
- •35. Перестановки диагоналей
- •36. Подсчёт деревьев
- •37. Ломаные
- •Алгоритмы
- •38. Монетки
- •39. Игра в полоску
- •40. Не больше половины
- •41. Ладья-ферзь
- •42. Угадайка
- •43. Эволюция клеток
- •44. Мудрецы у людоедов
- •45. Сумма кубов цифр
- •46. Задача Иосифа Флавия
- •47. Обезьяна и кокосы
- •48. Игра Ним
- •Приложения а. Сгибнев, д. Шноль. Исследовательские задачи при обучении математике в школе «Интеллектуал». 10
- •Зачем нужны исследовательские задачи
- •Как работает ученик
- •Ученик выбирает тему.
- •Ученик готовится к устному выступлению.
- •Ученик выступает и отвечает на вопросы при отчете о своей работе.
- •Как работает руководитель
- •Как происходит отчёт по работе
- •Как оценивать работы
- •Зачем нужны доклады
- •Откуда берутся темы
- •М. Ройтберг. О математических проектах в Красноярской летней школе12 Введение
- •Часть 1. Работа над проектами.
- •§1. Общие сведения.
- •Что мы называем проектной работой. Основной цикл.
- •1.2. Экспериментальная математика.
- •Групповая работа.
- •1.4. Как протекает работа над проектом. Роль кураторов.
- •§2. Запуск проектной работы.
- •2.1. Подготовка проектов.
- •2.2. Предварительная подготовка школьников.
- •2.3. Первое занятие. Распределение проектов.
- •2.4. Первое занятие. Начало работы над проектами.
- •§3. Решение задачи.
- •3.1. Организация работы на занятиях. Роль куратора.
- •3.2. Некоторые типичные трудности
- •3.3. Заключение.
- •§4. Завершение работы над проектом.
- •4.1. Подготовка отчетов.
- •4.2. Итоговое занятие.
- •Темы исследовательских задач по математике, предлагавшиеся на Летней школе интенсивного обучения «Интеллектуал»-201213
- •Памятка для докладчиков исследовательских работ14
- •Как готовить доклад
- •Как делать доклад
- •Как готовить постер
- •Источники
46. Задача Иосифа Флавия
Хорошая задача на идею рекурсии. На представлении тем эту задачу можно подать очень увлекательно, разыграв считалочку со школьниками. На самом деле задача возникла во вполне военной обстановке: в «Иудейской войне» Иосифа Флавия есть история о том, что «он в составе отряда из 41 иудейского воина был загнан римлянами в пещеру. Предпочитая самоубийство плену, воины решили выстроиться в круг и последовательно убивать каждого третьего из живых до тех пор, пока не останется ни одного человека. Однако Иосиф наряду с одним из своих единомышленников счел подобный конец бессмысленным - он быстро вычислил спасительные места в порочном круге, на которые поставил себя и своего товарища. И лишь поэтому мы знаем его историю.» (Р. Грэхем и др. «Конкретная математика». М., Мир, 2006. С. 25).
Стоит составить таблицу номеров уцелевших в зависимости от начального числа игроков. Далее можно увидеть закономерность, которую, впрочем, не так легко доказать напрямик. Можно перенумеровывать игроков после прохождения каждого круга, найти рекуррентный закон изменения номера уцелевшего и, используя его как шаг индукции, доказать найденную закономерность. Другой подход – заметить, что если вначале было 2n игроков, то «выживает» первый. Значит, если их 2n + l, то останется «в живых» тот, кто является первым после l исключений. (Этот подход быстрее приводит к цели, но вряд ли поддаётся обобщению.)
Обобщение. 1. Пусть выходит каждый k-й, начиная с k-го. (Уже в случае k = 3 всё заметно сложнее – поэтому-то мы пренебрегли исторической правдой и сформулировали задачу для каждого второго.)
2. Нужно узнать также номер предпоследнего оставшегося («спаси себя и друга»).
Ссылка. Р. Грэхем и др. «Конкретная математика» М., Мир, 2006. С. 25 и дальше. Содержит решение задачи для каждого k-го и различные обобщения задачи.
47. Обезьяна и кокосы
Заметим, что после того, как первый кокос разбит, задача сводится к задаче об одном кокосе. Полезно перевернуть задачу: какова этажность дома, который можно «протестировать» данным количеством бросков (имея два кокоса)? Этаж для броска данного кокоса надо выбирать так, чтобы количество проверок нижних этажей, если он разбился, равнялось количеству проверок более высоких, если он цел. Идея «равномерной траты попыток в пересчёте на приобретаемую информацию» – общая в подобных задачах, ср. задачи 38, 42.
Обобщение. Пусть будет 2 кокоса и F этажей; пусть будет C кокосов и F этажей.
48. Игра Ним
Возможный подход к решению такой: рассмотрим сначала одну кучку (очевидно), две кучки (симметричная стратегия). Для трёх кучек поставим такой вопрос: пусть в двух из них количества камней фиксированы – a и b; сколько камней с должно быть в третьей кучке, чтобы позиция была проигрышная? (Заметим, что с определяется по a и b однозначно, так как если бы для данных a и b было два разных значения c, то игрок мог бы из большего привести позицию к меньшему, т.е. привёл бы противника к проигрышной позиции.) Рисуем квадрант с натуральными a и b, находим по ним c, заполняем таблицу, смотрим на получающиеся узоры и ищем закономерности. «Правильная» закономерность обобщается уже на любое количество кучек.9
Ссылки.
1. А. Шень «Игры и стратегии в математике». М., МЦНМО, 2007. П. 4. Содержит полное решение.
2. В.В. Шилов. «Ещё раз об игре Ним». «Потенциал», 2009, N 6. Содержит увлекательные истории про эту игру.
Обобщение. Пусть имеются две кучи предметов (например, спичек), и два игрока поочередно берут либо произвольное число предметов из одной кучи, либо поровну из каждой кучи. Получится более сложная игра, называемая Цзяньшицзы. Если в анализе игры Ним помогала двоичная система счисления, то в Цзяньшицзы помогает фибоначчиева система. См., например, А.М.Яглом, И.М. Яглом. «Неэлементарные задачи в элементарном изложении». М., ГИТТЛ, 1954. Задача 129.
