- •Билеты к экзамену
- •13. Синаптическая передача возбуждения
- •Вопрос 30.Вызванные потенциалы.
- •Комплекс потенциалов мозга, связанных с движениями
- •Вопрос 32. Связанные с событиями потенциалы.
- •Нервный центр
- •19. Роль коры больших полушарий в интегративной деятельности мозга. Интегративная деятельность коры большого мозга
- •20. Роль спинного мозга в регуляции функций организма.
- •21. Роль среднего мозга в регуляции функций организма.
- •22. Роль промежуточного мозга в регуляции функций организма.
- •51. Роль промежуточного мозга в интегративной деятельности цнс
- •23. Роль мозжечка в интегративной деятельности цнс.
- •24. Роль базальных ядер в интегративной деятельности цнс.
- •25. Физиология симпатической нервной системы.
- •26. Физиология парасимпатической нервной системы. Парасимпатическая часть
- •Материал из Википедии — свободной энциклопедии
- •Симпатическая система (сравнение с парасимпатической системой, табл)
- •27. Общие принципы сенсорной чувствительности. Понятие анализатора.
- •28. Пороги чувствительности: абсолютный, дифференциальный, разностный, пространственный и т.Д.
- •29. Рецептивные и проекционные поля нейронов. Механизмы переработки информации в сенсорной системе
- •30. Сенсорные рецепторы I (первичные) и II (вторичные) типа.
- •32. Кодирование нервной системой свойств раздражителя.
- •33. Сенсорные детекторы.
- •34. Проприорецепция, ее роль в регуляции движений, мышечного тонуса и в чувствительности других модальностей. Проприорецепция (глубокомышечное чувство)
- •35. Физиология фоторецепции.
- •36. Строение глаза.
- •Внешнее строение
- •Мышцы глаза
- •Оболочки глаза
- •Роговица
- •Радужка
- •Цилиарное тело
- •Хрусталик
- •Сетчатка
- •37. Оценка местоположения зрительного объекта.
- •38. Оценка размеров и объемности зрительного объекта.
- •39. Оценка удалённости зрительного объекта.
- •40. Оценка движения зрительного объекта.
- •41. Оценка цвета зрительного объекта.
- •42. Корковые и подкорковые зрительные и слуховые центры.
- •43. Строение внутреннего уха. Функционирование улитки и полукружных каналов.
- •44. Физиологические механизмы оценки высоты звука.
- •45. Физиологические механизмы оценки интенсивности звука.
- •46. Физиологические механизмы оценки местоположения и движения источника звука.
- •47. Физиология вестибулярной чувствительности.
- •48. Зрительный и вестибулярный нистагм. Система равновесияПравить
- •49. Кожная чувствительность (тактильная, болевая, температурная и др.).
- •50. Физиологические механизмы обоняния и вкуса.
- •51. Роль движений и мышечной активности в сенсорной чувствительности.
- •52. Интерорецепция. Роль цнс в регуляции функционирования внутренних органов.
- •Висцеральная сенсорная система
46. Физиологические механизмы оценки местоположения и движения источника звука.
1 Восприятие направления движущегося в ближней и дальней областях пространства звукового источника основано на тех же признаках движения, что и локализация неподвижных источников звука
2 Локализация приближающегося и/или удаляющегося звукового источника в ближней области пространства (расстояния менее 3 м) обеспечивается как монауральными, так и бинауральными механизмами, тогда как его локализация в дальней области базируется исключительно на монауральных механизмах
3 Инерционность слуховой системы проявляется в ограничениях по длительности звучания источника при обнаружении факта его радиального движения, оценке направления и равномерности движения Инерционность увеличивается при монауральном восприятии движения и при перемещении звукового образа под азимутальным углом 90°, когда исключено участие высокочастотного бинаурального механизма
4 Слуховой анализ радиального движения звукового образа обладает высокой помехоустойчивостью, которая проявляется в стабильности психофизических шкал радиального движения в условиях шума и в постоянстве временных показателей восприятия на фоне непрерывной широкополосной помехи Теоретическое и практическое значение работы В данном исследовании решен ряд теоретических проблем, связанных с созданием теории пространственного слуха Выявлены причины неоднозначного восприятия удаленности звуковых источников и выдвинута гипотеза о существовании двух подсистем локализации по расстоянию Исследованы признаки локализации и временные характеристики для обеих подсистем Показана роль временных интегративных процессов при монауральной и бинауральной локализации радиально движущихся источников звука Выявлена высокая помехоустойчивость локализации источников звука по радиальной координате акустического пространства
47. Физиология вестибулярной чувствительности.
Из рецепторов вестибулярного анализатора постоянно исходят импульсы, регулирующие тонус мышц как во время покоя (статика), так и во время движения (кинетика). В последнем случае благодаря раздражению этих рецепторов, вызванному ускорением, возникают двигательные реакции, способствующие сохранению равновесия тела. Поэтому вестибулярный анализатор по праву занимает заметное место среди анализаторов (органы мышечно-суставной чувствительности, кожа, глаза), обеспечивающих равновесие тела и ориентацию в пространстве. Уже в 1870 г. Гольц (Goltz) высказал мысль, что вестибулярный аппарат является «органом чувств для равновесия головы, а значит и тела». Значение вестибулярного анализатора в жизни животного организма весьма велико. Любое движение животного или человека сопряжено с изменением положения либо тела, либо отдельных его частей в пространстве. Кинестетический анализатор постоянно получает сигналы от всех многочисленных рецепторов, заложенных в мышцах, связках, сухожилиях, суставных поверхностях и коже, и этим обеспечивает точную координацию движений. При локомоции животного раздражению подвергаются рецепторные аппараты, заложенные в полукружных каналах и мешочках преддверия лабиринта. Этим обеспечивается сигнализация о направлении и скорости движения даже при пассивном перемещении тела, т. е. тогда, когда другие рецепторные аппараты двигательного анализатора раздражаются слабо или совсем не раздражаются. Это наблюдается при определенных условиях передвижения на транспорте, в токах воды или воздуха у рыб и птиц. Значение функции вестибулярного анализатора особенно отчетливо выступает в темноте, при выключенной зрительной ориентации. Рефлексы положения исходят из отолитового рецептора, который даже при нормальном положении головы постоянно раздражается силой тяжести, благодаря чему поддерживается правильное распределение тонуса мышц шеи, туловища и конечностей. Любое же изменение положения головы в поле силы тяжести (например, наклон, подъем, поворот) сразу же сказывается на тонусе мышц глаз, шеи, туловища и конечностей, причем создается наиболее выгодное соотношение этого тонуса. Кроме того, возникает ряд двигательных рефлексов, направленных к возврату головы в нормальное симметричное положение. Благодаря вестибулярному анализатору мы ощущаем и можем подвергнуть анализу движения нашего тела (головы) в пространстве, например, определяем направление и скорость движения как прямолинейного, так и кругового. Наконец, всякое изменение направления земного ускорения по отношению отолитового рецептора ощущается нами как изменение угла наклона тела (головы). Поэтому вестибулярный анализатор по праву можно причислить к органам чувств. Тонкий анализ и точную координацию движения вестибулярный анализатор выполняет совместно с мышечно-суставным, кожным и зрительным анализаторами, являясь вместе с ними одним из важных анализаторов пространства.
