Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Теоретическая механика.docx1.docx2.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
1.68 Mб
Скачать

15. Абсолютное и относительное движение точки. Переносное движение .Скорость точки при сложном движении

Направление полного ускорения определим по тангенсу уг­ла α, который полное ускорение образует с нормальным ускоре­нием (рис. 52). Получим

tgα=

tgα=

В ряде случаев приходится рассматривать движение точки по отношению к системе координат О1ξηζ, которая, в свою очередь, движется по отношению к другой системе координат Охуz условно принятой в качестве неподвижной. В механике каждую из указан­ных систем координат связывают с некоторым телом. Например, рас­смотрим качение без скольжения колеса вагона по рель­су. С рельсом свяжем неподвижную систему координат Аху, а подвижную систему Oξη свяжем с центром колеса и предположим, что она движется поступательно. Движе­ние точки на ободе колеса является составным или сложным.

Введем следующие определения:

Переносным движением точки называется ее движение в рассматриваемый момент времени вместе с подвижной системой координат относительно неподвижной системы координат.

Переносная скорость и переносное ускорение точки обозначается индексом е .

Переносной скоростью  (ускорением  ) точки М в данный момент времени называют вектор, равный скорости  (ускорению  ) той точки m подвижной системы координат, с которой совпадает в данный момент движущая точка М (рис. 8.1).

Проведем радиус-вектор начала координат  (рис. 8.1). Из рисунка видно, что

. (8.4)

Чтобы найти переносную скорость точки в заданный момент времени необходимо продифференцировать радиус-вектор  при условии, что координаты точки x, y, zне изменяются в данный момент времени:

. (8.5)

Переносное ускорение соответственно равно

. (8.6)

Таким образом для определения переносной скорости  и переносного ускорения  в данный момент времени необходимо мысленно остановить в этот момент времени относительное движение точки, определить точку m тела, неизменно связанного с подвижной системой координат, где находится в остановленный момент точка М, и вычислить скорость и ускорение точки m тела, совершающего переносное движение относительно неподвижной системы координат.

 

Сложным движением точки называется такое ее движение, при кото­ром она движется относительно системы отсчета, перемещающейся по отношению к некоторой другой системе отсчета, принятой за непод­вижную. Например, можно считать, что пассажир, идущий по вагону движущегося поезда, со­вершает сложное движение по отношению к полотну дороги, состоящее из движения пассажира по отношению к вагону (подвижная система отсчета) и дви­жения пассажира вместе с вагоном по отношению к полотну дороги (неподвижная система отсчета).

Движение точки по отношению к подвижной системе ко­ординат называется относительным движением точки. Скорость и ускорение этого движения называют относитель­ной скоростью и относительным ускорением и обозначают    и  .

Движение точки, обусловленное движением подвижной системы координат, называется переносным движением точки.

Переносной скоростью и переносным ускорением точки на­зывают скорость и ускорение той, жестко связанной с под­вижной системой коор­динат точки, с которой совпадает в дан­ный момент времени движущаяся точка, и обозначают    и  .

Движение точки по отношению к неподвижной системе координат называ­ется абсолютнымили сложным. Скорость и ускорение точки в этом движении называют абсолютнойскоростью и абсолютным ускорением и обозначают    и  .

В приведенном выше примере движение пассажира относительно вагона будет относительным, а скорость – относительной скоростью пассажира; движение вагона по отношению к полотну дороги будет для пассажира переносным движением, а скорость вагона, в котором находится пассажир, будет в этот момент его переносной скоростью; наконец, движение пассажира по отношению к полотну будет его абсолютным движением, а скорость – абсолютной скоростью.