- •Теоретическая механика Ответы по кинематике
- •1.1Предмет кинематики . 1.2относительность механического движения. 1.3задачи кинематики.
- •2.1Векторный способ задания движения точки .2.2траектория движения точки , скорость точки годограф скорости , ускорения точки
- •3.Координатный способ задания движения точки .Закон движения , траектория , скорость и ускорения точки .
- •4.Естественный способ задания движения точки. Естественный трехгранник и его орты
- •1.8. Естественный трехгранник
- •5.Вычисления скорости точки при естественном способе задания движения
- •6.Вычисления ускорения точки при естественном способе задания точки
- •7.Касательное и нормальное ускорения точки . Характер движения точки.
- •11.Определения скорости любой точки плоской фигуры путем сложения скорости этой точки во вращательном
- •12.Мгновений центр скоростей .Определение скоростей точек плоской фигуры с помощью мцс. Основные случаи определения положения мцс.
- •13.Определение ускорений любой точки плоской фигуры путем сложения ускорения полюса и ускорения этой точки во вращательном движении плоской фигуры вокруг полюса (формула сложения ускорении ).
- •Тема 10. Сферическое движение твердого тела
- •Тема 11. Сложное движение точки
- •15. Абсолютное и относительное движение точки. Переносное движение .Скорость точки при сложном движении
- •§ 21. Определение скорости точки при сложном
- •Ответы по статике Аксиомы статики твердого тела .Аксиомы уравновешенной системы двух сил . Аксиома параллелограмма сил. Сила, как скользящий вектор
- •§ 2. Аксиомы статики твердого тела
- •2. Момент силы относительно точки . Разложения момента силы по осям декартовой системы координат
- •3.Теорема о проекции момента силы относительно точки на ось ,Проходящую через эту точку. Момент силы относительно оси.
- •4. Вычисления момента силы относительно аналитическим и графоаналитическим способами
- •1.Аналетический способ
- •5.Характеристики силы . Сила, действующая на твердое тело . Задание силы
- •6.Сходящаяся система сил. Равнодействующая сходящейся системы сил, условие равновесия (геометрическая и аналитическая формы)
- •§ 2. Равновесие произвольной системы сил.
- •7.Понятие о паре сил. Характеристики пары. Задание пары. Момент пары сил как вектор.
- •8.Сложения пар, произвольно расположенных в пространстве . Простейшая система для системы пар сил. Условие равновесия системы пар сил.
- •9.Перенос сил к заданную точку . Теорема о приведении произвольной системы сил к заданному центру . Главный вектор и главный момент системы сил
- •10.Условия равновесия твердого тела под действием системы сил , произвольно расположенных в пространстве
- •11.Плоская система сил. Приведение к простейшей системе. Три формы уравнении равновесия для плоской системы
- •12.Основные виды связей (опор) и их реакции. Классификация связей
- •Динамика
- •3)Кинетическая энергия механической системы Кинетической энергией механической системы называется сумма кинетических энергий всех точек этой системы:
- •10) Кинетической энергией системы называется скалярная величина т, равная арифметической сумме кинетических энергий всех точек системы
- •Принцип Даламбера для материальной точки
- •Принцип Даламбера для механической системы
- •17) Связи и их уравнения. Классификация связей по виду уравнений связей: геометрические и кинематические, стационарные и нестационарные, удерживающие и неудерживающие, голономные, неголономные.
- •18) Возможные (виртуальные) перемещения системы. Работа сил на возможном перемещении.
- •19) Активные и реактивные силы. Идеальные связи. Основные случаи идеальных связей.
- •20)Обобщенные координаты. Число степеней свободы.
- •21)Обобщенные силы и способы их вычисления.
- •25)Дифференциальное уравнение движения механической системы в обобщенных координатах (уравнение Лагранжа 2-го рода)
- •26) Функция Лагранжа. Уравнение Лагранжа 2-го рода для консервативных
15. Абсолютное и относительное движение точки. Переносное движение .Скорость точки при сложном движении
Направление полного ускорения определим по тангенсу угла α, который полное ускорение образует с нормальным ускорением (рис. 52). Получим
tgα=
tgα=
В ряде случаев приходится рассматривать движение точки по отношению к системе координат О1ξηζ, которая, в свою очередь, движется по отношению к другой системе координат Охуz условно принятой в качестве неподвижной. В механике каждую из указанных систем координат связывают с некоторым телом. Например, рассмотрим качение без скольжения колеса вагона по рельсу. С рельсом свяжем неподвижную систему координат Аху, а подвижную систему Oξη свяжем с центром колеса и предположим, что она движется поступательно. Движение точки на ободе колеса является составным или сложным.
Введем следующие определения:
Переносным движением точки называется ее движение в рассматриваемый момент времени вместе с подвижной системой координат относительно неподвижной системы координат.
Переносная
скорость и переносное ускорение точки
обозначается индексом е:
,
.
Переносной
скоростью
(ускорением
)
точки М в данный момент времени называют
вектор, равный скорости
(ускорению
)
той точки m подвижной системы координат,
с которой совпадает в данный момент
движущая точка М (рис.
8.1).
Проведем
радиус-вектор начала координат
(рис.
8.1). Из рисунка видно, что
.
(8.4)
Чтобы
найти переносную скорость точки в
заданный момент времени необходимо
продифференцировать радиус-вектор
при
условии, что координаты точки x,
y, zне
изменяются в данный момент времени:
.
(8.5)
Переносное ускорение соответственно равно
.
(8.6)
Таким образом для определения переносной скорости и переносного ускорения в данный момент времени необходимо мысленно остановить в этот момент времени относительное движение точки, определить точку m тела, неизменно связанного с подвижной системой координат, где находится в остановленный момент точка М, и вычислить скорость и ускорение точки m тела, совершающего переносное движение относительно неподвижной системы координат.
Сложным движением точки называется такое ее движение, при котором она движется относительно системы отсчета, перемещающейся по отношению к некоторой другой системе отсчета, принятой за неподвижную. Например, можно считать, что пассажир, идущий по вагону движущегося поезда, совершает сложное движение по отношению к полотну дороги, состоящее из движения пассажира по отношению к вагону (подвижная система отсчета) и движения пассажира вместе с вагоном по отношению к полотну дороги (неподвижная система отсчета).
Движение
точки по отношению к подвижной системе
координат называется относительным
движением точки.
Скорость и ускорение этого движения
называют относительной
скоростью и относительным
ускорением и
обозначают
и
.
Движение точки, обусловленное движением подвижной системы координат, называется переносным движением точки.
Переносной
скоростью и переносным
ускорением точки называют
скорость и ускорение той, жестко связанной
с подвижной системой координат
точки, с которой совпадает в данный
момент времени движущаяся точка, и
обозначают
и
.
Движение
точки по отношению к неподвижной системе
координат называется абсолютнымили сложным.
Скорость и ускорение точки в этом
движении
называют абсолютнойскоростью и абсолютным ускорением и
обозначают
и
.
В приведенном выше примере движение пассажира относительно вагона будет относительным, а скорость – относительной скоростью пассажира; движение вагона по отношению к полотну дороги будет для пассажира переносным движением, а скорость вагона, в котором находится пассажир, будет в этот момент его переносной скоростью; наконец, движение пассажира по отношению к полотну будет его абсолютным движением, а скорость – абсолютной скоростью.
