- •Теоретическая механика Ответы по кинематике
- •1.1Предмет кинематики . 1.2относительность механического движения. 1.3задачи кинематики.
- •2.1Векторный способ задания движения точки .2.2траектория движения точки , скорость точки годограф скорости , ускорения точки
- •3.Координатный способ задания движения точки .Закон движения , траектория , скорость и ускорения точки .
- •4.Естественный способ задания движения точки. Естественный трехгранник и его орты
- •1.8. Естественный трехгранник
- •5.Вычисления скорости точки при естественном способе задания движения
- •6.Вычисления ускорения точки при естественном способе задания точки
- •7.Касательное и нормальное ускорения точки . Характер движения точки.
- •11.Определения скорости любой точки плоской фигуры путем сложения скорости этой точки во вращательном
- •12.Мгновений центр скоростей .Определение скоростей точек плоской фигуры с помощью мцс. Основные случаи определения положения мцс.
- •13.Определение ускорений любой точки плоской фигуры путем сложения ускорения полюса и ускорения этой точки во вращательном движении плоской фигуры вокруг полюса (формула сложения ускорении ).
- •Тема 10. Сферическое движение твердого тела
- •Тема 11. Сложное движение точки
- •15. Абсолютное и относительное движение точки. Переносное движение .Скорость точки при сложном движении
- •§ 21. Определение скорости точки при сложном
- •Ответы по статике Аксиомы статики твердого тела .Аксиомы уравновешенной системы двух сил . Аксиома параллелограмма сил. Сила, как скользящий вектор
- •§ 2. Аксиомы статики твердого тела
- •2. Момент силы относительно точки . Разложения момента силы по осям декартовой системы координат
- •3.Теорема о проекции момента силы относительно точки на ось ,Проходящую через эту точку. Момент силы относительно оси.
- •4. Вычисления момента силы относительно аналитическим и графоаналитическим способами
- •1.Аналетический способ
- •5.Характеристики силы . Сила, действующая на твердое тело . Задание силы
- •6.Сходящаяся система сил. Равнодействующая сходящейся системы сил, условие равновесия (геометрическая и аналитическая формы)
- •§ 2. Равновесие произвольной системы сил.
- •7.Понятие о паре сил. Характеристики пары. Задание пары. Момент пары сил как вектор.
- •8.Сложения пар, произвольно расположенных в пространстве . Простейшая система для системы пар сил. Условие равновесия системы пар сил.
- •9.Перенос сил к заданную точку . Теорема о приведении произвольной системы сил к заданному центру . Главный вектор и главный момент системы сил
- •10.Условия равновесия твердого тела под действием системы сил , произвольно расположенных в пространстве
- •11.Плоская система сил. Приведение к простейшей системе. Три формы уравнении равновесия для плоской системы
- •12.Основные виды связей (опор) и их реакции. Классификация связей
- •Динамика
- •3)Кинетическая энергия механической системы Кинетической энергией механической системы называется сумма кинетических энергий всех точек этой системы:
- •10) Кинетической энергией системы называется скалярная величина т, равная арифметической сумме кинетических энергий всех точек системы
- •Принцип Даламбера для материальной точки
- •Принцип Даламбера для механической системы
- •17) Связи и их уравнения. Классификация связей по виду уравнений связей: геометрические и кинематические, стационарные и нестационарные, удерживающие и неудерживающие, голономные, неголономные.
- •18) Возможные (виртуальные) перемещения системы. Работа сил на возможном перемещении.
- •19) Активные и реактивные силы. Идеальные связи. Основные случаи идеальных связей.
- •20)Обобщенные координаты. Число степеней свободы.
- •21)Обобщенные силы и способы их вычисления.
- •25)Дифференциальное уравнение движения механической системы в обобщенных координатах (уравнение Лагранжа 2-го рода)
- •26) Функция Лагранжа. Уравнение Лагранжа 2-го рода для консервативных
8.Сложения пар, произвольно расположенных в пространстве . Простейшая система для системы пар сил. Условие равновесия системы пар сил.
Свойства пар сил определяются рядом теорем, которые приводятся без доказательств:
· Две пары эквивалентны, если их векторные моменты равны по величине и одинаково направлены.
· Действие пары на тело не изменится, если ее перенести в плоскости действия на любое место.
· Действие пары на тело не изменится, если ее перенести из плоскости действия в параллельную ей плоскость.
· Действие пары на тело не изменится, если увеличить (уменьшить) величину силы пары, одновременно уменьшая (увеличивая) во столько же раз плечо пары.
Вывод: векторный момент пары сил, действующей на твердое тело, есть свободный вектор, т. е. его можно приложить в любой точке твердого тела.
Рассмотрим сложение пар, произвольно расположенных в пространстве. Докажем теорему:
Система пар, произвольно расположенных в пространстве, эквивалентна одной паре с моментом, равным геометрической сумме моментов слагаемых пар.
Возьмем две пары ( ) и ( ), расположенные на пересекающихся под произвольным углом плоскостях. Плечи пар примем равными соответственно и . На линии пересечения плоскостей отметим произвольный отрезок АВ и приведем каждую из слагаемых пар к плечу АВ. Произведя сложение соответствующих сил (см. рис.) с и с , получим новую пару ( ), момент которой будет равен
Рис.2.18 Равнодействующая пар сил
Систему пар сил, действующих на тело, можно, в соответствии с только что доказанной теоремой, заменить одной парой, равной сумме векторов моментов слагаемых пар. Следовательно, равновесие системы пар возможно только при выполнении условия
Проецируя приведенное векторное условие равновесия пар на любые три оси, не лежащие в одной плоскости и не параллельные друг другу, получим скалярные уравнения равновесия системы пар
Если на тело, закрепленное в некоторой точке А, действует сила F , то тело повернется относительно этой точки. Вращательное движение тела характеризуетсявращающим моментом М.
Моментом силы F относительно точкиА называется величина, численно равная произведению силы на плечо (рис. 1.16):
где l—
плечо (перпендикуляр, опущенный из точки
на линию действия силы). За единицу
вращающего момента принимается 1 Нм:
1кНм=103Нм.
Парой
силназывается
система двух сил, равных по величине,
противоположных по направлению и не
лежащих на одной
прямой
(рис. 1.17).
Пара сил оказывает на тело вращающее действие, которое характеризуется вращающим моментом М.
Вращающий момент пары силравен произведению одной из сил пары на плечо:
где h —
плечо пары сил (перпендикуляр,
восстановленныймежду линиями действия
сил). Пара сил на схемах изображается
дугообразной стрелкой (рис. 1.18). Пару
сил нельзя
заменить одной равнодействующей
силой. Пара
сил не имеет проекций
на оси координат. Если на тело действует
несколько пар сил, то их можно заменить
одной равнодействующей парой, момент
которой равен алгебраической сумме
моментов слагаемых пар сил, действующих
на тело (рис. 1.19):
Две
пары сил называются эквивалентными,если
они оказывают на тело одинаковое
действие. У эквивалентных пар сил
вращающие моменты должны быть одинаковы
как по величине, так и по направлению.
Условие равновесия плоской системы пар сил:алгебраическая сумма моментов слагаемых пар сил должна быть равна нулю, т.е.
