- •Шпоры по дисциплине «Теоретические Основы Электротехники».
- •Дать понятие о формах материи: вещество и поле. Охарактеризовать электромагнитное поле как особую форму материи.
- •Дать понятие силовой и энергетической характеристики электрического поля.
- •Сформулировать закон Кулона. Охарактеризовать основные характеристики электрического поля: напряженность, электрический потенциал, электрическое напряжение.
- •Охарактеризовать проводниковые материалы, привести примеры.
- •Дать понятие электропроводимости. Изложить классификацию веществ по степени электропроводимости.
- •Объяснить физическое явление электрического тока и интенсивность электрического тока.
- •Изложить понятие электрического тока в проводниках.
- •Объяснить понятие удельная электрическая проводимость и сопротивление, электрическая проводимость и сопротивления проводников.
- •Сформулировать закон Ома. Охарактеризовать зависимость сопротивления проводников от температуры. Дать понятие о сверхпроводимости.
- •Охарактеризовать элементы электрических цепей, объяснить их классификацию.
- •Дать понятие электродвижущей силы (эдс), мощности и коэффициента полезного действия источника электрической энергии.
- •Изложить понятие энергии, мощности и коэффициента полезного действия приемника электрической энергии.
- •Изложить сущность закона Джоуля - Ленца. Объяснить его применение.
- •Охарактеризовать режимы работы электрических цепей, объяснить работу электрической цепи в номинальном и рабочем режиме.
- •Проанализировать условия режимов холостого хода и короткого замыкания в электрической цепи.
- •Составить и охарактеризовать схемы замещения источников эдс и тока, приемников электрической энергии.
- •Изложить цели и задачи расчета электрических цепей. Сформулировать законы Кирхгофа.
- •Объяснить свойства последовательного соединения пассивных элементов.
- •Дать понятие потенциальной диаграммы электрической цепи и изложить особенности ее построения.
- •Нарисовать разветвленную электрическую цепь с двумя узлами. Изложить свойства параллельного соединения пассивных элементов.
- •Охарактеризовать особенности смешанного соединения пассивных элементов. Определить порядок расчета электрической цепи при смешанном соединения резисторов.
- •Изложить особенности расчета электрических цепей методом эквивалентных преобразований (метод свертывания электрической цепи).
- •Объяснить методику расчета сложных электрических цепей постоянного тока методом узловых и контурных уравнений (метод законов Кирхгофа).
- •Объяснить методику расчета сложных электрических цепей постоянного тока методом контурных токов.
- •Объяснить методику расчета сложных электрических цепей постоянного тока методом наложения токов.
- •Изложить порядок расчета сложных цепей постоянного тока методом эквивалентного генератора.
- •Изложить порядок расчета сложных цепей постоянного тока методом узлового напряжения.
- •Объясните порядок и особенности преобразования треугольника сопротивлений в эквивалентную звезду.
- •Объясните порядок и особенности преобразования звезды сопротивлений в эквивалентный треугольник.
- •Проанализировать особенности графического расчета нелинейных электрических цепей постоянного тока при последовательном соединении элементов.
- •Проанализировать особенности графического расчета нелинейных электрических цепей постоянного тока при параллельном соединении элементов.
- •Проанализировать особенности графического расчета нелинейных электрических цепей постоянного тока при смешанном соединении элементов.
- •Дать определение электрической емкости и конденсатора. Охарактеризовать применение конденсатора.
- •Охарактеризовать явление электрического пробоя и электрической прочности диэлектрика.
- •Привести примеры электростатических цепей и проанализировать особенности их расчета.
- •Охарактеризовать понятие проводника с током в магнитном поле.
- •Дать понятие магнитного потока, потокосцепления. Охарактеризовать работу по перемещению проводника с током в магнитном поле.
- •Изложить основные магнитные свойства вещества. Объяснить процесс намагничивания и намагниченность веществ.
- •Охарактеризовать намагничивание ферромагнитных материалов. Объяснить явление магнитного гистерезиса.
- •Дать определение магнитных цепей, проанализировать особенности расчета магнитных цепей.
- •Проанализировать особенности расчета неразветвленной однородной магнитной цепи.
- •Объяснить явление электромагнитной индукции. Изложить закон электромагнитной индукции.
- •Обосновать применение закона электромагнитной индукции на практике.
- •Изложить сущность явления переменного тока. Объяснить принцип получения синусоидальной эдс.
- •Изложить принцип действия генератора переменного тока.
- •Записать уравнения и графики синусоидальной эдс.
- •Дать характеристику параметров синусоидального тока (период, частота, амплитуда, фаза, начальная фаза, угловая частота).
- •Объяснить сущность изображения синусоидальных величин с помощью векторов.
- •Проанализировать правила сложения и вычитания синусоидальных величин с помощью векторов.
- •Объясните, что такое действующее и среднее значение переменного тока. Записать формулы для их вычисления.
- •Изложить основные параметры электрической цепи. Охарактеризовать цепь переменного тока с активным сопротивлением: напряжение, ток, мощность, векторная диаграмма.
- •Охарактеризовать цепь переменного тока с индуктивностью: напряжение, ток, мощность, векторная диаграмма.
- •Охарактеризовать цепь переменного тока с емкостью: напряжение, ток, мощность, векторная диаграмма.
- •Охарактеризовать понятие активного и реактивного сопротивления.
- •Охарактеризовать понятие активной, реактивной и полной мощности электрической цепи переменного тока.
- •Проанализировать особенности расчета неразветвленной цепи переменного тока. Нарисовать треугольники напряжений, сопротивлений и мощностей.
- •Проанализировать методику расчета неразветвленной цепи переменного тока с произвольным числом активных и реактивных элементов.
- •Объяснить правила построения топографической диаграммы неразветвленной цепи.
- •Проанализировать методику расчета разветвленной цепи переменного тока с двумя узлами с активным сопротивлением, индуктивностью и емкостью при различных соотношениях реактивных проводимостей.
- •Проанализировать методику расчета цепи переменного тока с двумя узлами с произвольным числом параллельных ветвей методом проводимостей.
- •Проанализировать методику расчета цепи переменного тока с двумя узлами с произвольным числом параллельных ветвей графоаналитическим методом.
- •Объяснить принцип компенсации реактивной мощности в электрических сетях. Объяснить понятие коэффициента мощности.
- •Изложить методы увеличения коэффициента мощности и его влияние на технико-экономические показатели электроустановок.
- •Изложить сущность выражения синусоидальных величин комплексными числами.
- •Записать комплексные сопротивления, проводимости, мощности и охарактеризовать их.
- •Записать законы Ома и Кирхгофа в символической форме.
- •Изложить сущность символического метода расчета электрических цепей переменного тока.
- •Объяснить явление резонанса напряжений: условие и признаки резонанса напряжений, резонансная частота.
- •Дать определение резонанса напряжений и проанализировать его достоинства и недостатки. Изложить особенности практического использование резонанса напряжений.
- •Объяснить явление резонанса токов: условия и признаки резонанса токов.
- •Дать определение резонанса токов, проанализировать его достоинства и недостатки. Изложить особенности практического использования резонанса токов.
- •Объяснить принцип получения трехфазной эдс. Проанализировать особенности трехфазной системы напряжений.
- •Изложить достоинства применения трехфазной системы переменного тока.
- •Изложить понятие симметричной нагрузки в трехфазной цепи при соединении обмоток генератора и фаз приемника звездой. Проанализировать фазные, линейные напряжения и токи, соотношения между ними.
- •Изложить понятие несимметричной нагрузки в трехфазной цепи при соединении фаз приемника звездой.
- •Нарисовать четырехпроводную трехфазную система. Изложить роль нулевого провода.
- •Изложить особенности расчета трехфазных цепей при соединении нагрузки звездой. Дать понятие мощности трехфазных цепей.
- •Дать понятие несимметричной нагрузки в трехфазной цепи при соединении обмоток генератора и фаз приемника треугольником.
- •Изложить особенности расчета трехфазной цепи потребителя при соединении «треугольником».
- •Изложить причины возникновения несинусоидальных эдс, токов и напряжений в электрических цепях.
- •Представить аналитическое выражение несинусоидальной величины в виде тригонометрического ряда.
- •Проанализировать особенности расчета электрических цепей с несинусоидальными токами (напряжениями).
- •Дать понятие о переходных процессах. Изложить первый и второй законы коммутации.
- •Проанализировать физические процессы в цепи с катушкой индуктивности при включение ее на постоянное напряжение.
- •Проанализировать физические процессы в цепи с катушкой индуктивности при отключении от источника постоянного напряжения.
- •Проанализировать физические процессы в цепи с конденсатором при включение его на постоянное напряжение.
- •Проанализировать физические процессы в цепи с конденсатором при отключении от источника постоянного напряжения.
Охарактеризовать элементы электрических цепей, объяснить их классификацию.
Электрическая цепь - совокупность устройств, элементов, предназначенных для протекания электрического тока, электромагнитные процессы в которых могут быть описаны с помощью понятий сила тока и напряжение.
Электрическая цепь состоит из отдельных частей (объектов), выполняющих определенные функции и называемых элементами цепи.
Основными элементами цепи являются источники и приемники электрической энергии (сигналов). Электротехнические устройства, производящие электрическую энергию, называются генераторами или источниками электрической энергии, а устройства, потребляющие ее – приемниками (потребителями) электрической энергии.
У каждого элемента цепи можно выделить определенное число зажимов (полюсов), с помощью которых он соединяется с другими элементами. Различают двух –и многополюсные элементы. Двухполюсники имеют два зажима. К ним относятся источники энергии (за исключением управляемых и многофазных), резисторы, катушки индуктивности, конденсаторы. Многополюсные элементы – это, например, триоды, трансформаторы, усилители и т.д.
Классификация электрических цепей:
По роду тока: постоянного тока, переменного тока, синусоидальные, несинусоидальные.
По числу фаз: однофазные, трехфазные.
По характеру элементов: линейные (в них все элементы линейные), нелинейные (содержат хотя бы один нелинейный элемент).
Дать понятие электродвижущей силы (эдс), мощности и коэффициента полезного действия источника электрической энергии.
Электродвижущая сила - скалярная физическая величина, характеризующая работу сторонних сил, то есть любых сил неэлектрического происхождения, действующих в квазистационарных цепях постоянного или переменного тока. В замкнутом проводящем контуре ЭДС равна работе этих сил по перемещению единичного положительного заряда вдоль всего контура.
Электродвижущая сила измеряется в вольтах.
Можно говорить об электродвижущей силе на любом участке цепи. Это удельная работа сторонних сил не во всем контуре, а только на данном участке. ЭДС гальванического элемента есть работа сторонних сил при перемещении единичного положительного заряда внутри элемента от одного полюса к другому. Работа сторонних сил не может быть выражена через разность потенциалов, так как сторонние силы не потенциальны и их работа зависит от формы траектории.
Причиной электродвижущей силы может стать изменение магнитного поля в окружающем пространстве. Это явление называется электромагнитной индукцией. Величина ЭДС индукции в контуре определяется выражением:
где
ф — поток магнитного поля через замкнутую поверхность S, ограниченную контуром. Знак «−» перед выражением показывает, что индукционный ток, созданный ЭДС индукции, препятствует изменению магнитного потока в контуре.
Мощность,
отдаваемая источником энергии во внешнюю
цепь, является полезной мощностью
,
а мощность, получаемая им извне (от
источника энергии механической,
химической и т. д.) - потребляемой
.
Приемник электрической энергии, потребляя
энергию из сети источника электрической
энергии, преобразует ее в энергию другого
вида — механическую, тепловую и т. д.
Для оценки свойств преобразователя энергии (источника или приемника электрической энергии) служит коэффициент полезного действия, равный отношению полезной мощности источника или приемника энергии к мощности, потребляемой им .
Мощность, отдаваемая источником электрической энергии во внешнюю цепь (полезная мощность), равна произведению напряжения на его зажимах на силу тока в цепи, т. е. =UI.
Изложить сущность преобразования электрической энергии в другие виды энергии, объяснить количественное выражение энергии при нагревании проводника электрическим током, сформулировать закон Джоуля - Ленца.
Закон Джоуля – Ленца - физический закон, дающий количественную оценку теплового действия электрического тока. Закон установлен в 1841 году Джеймсом Джоулем.
Закон: Мощность тепла, выделяемого в единице объёма среды при протекании электрического тока, пропорциональна произведению плотности электрического тока на величину напряженности электрического поля.
Закон также может быть сформулирован в интегральной форме для случая протекания токов в тонких проводах: Количество теплоты, выделяемое в единицу времени в рассматриваемом участке цепи, пропорционально произведению квадрата силы тока на этом участке и сопротивления участка.
Нагревание проводника электрическим током. Электрический ток, проходящий через проводник, нагревает его. Количество тепла, выделяемое при нагревании, пропорционально квадрату силы тока, сопротивлению, а также времени прохождения тока. Нагрев вихревыми токами проводников приводит к потерям энергии.
Тепло, выделяемое проводником с током, в той или иной степени выделяется в окружающую среду. В случае, если сила тока в выбранном проводнике превысит некоторое предельно допустимое значение, возможен столь сильный нагрев, что проводник может спровоцировать возгорание находящихся рядом с ним объектов или расплавиться сам. Как правило, при выборе проводов, предназначенных для сборки электрических цепей, достаточно следовать принятым нормативным документам, которые регламентируют выбор сечения проводников. Если сила тока одна и та же на всём протяжении электрической цепи, то в любом выбранном участке будет выделять тепла тем больше, чем выше сопротивление данного участка.
Преобразования электрической энергии в другие виды энергии. Преобразование электрической энергии в другие виды энергии, например в тепловую, механическую или химическую, всегда связано с использованием электрического тока. Для преобразования электрической энергии в механическую служат электромагниты и электродвигатели. Преобразование электрической энергии в магнитную происходит в процессе изменения тока в обмотке электромагнита. Преобразование электрической энергии в тепловую имеет большое практическое значение для создания ламп накаливания, нагревательных приборов и печей.
