- •Шпоры по дисциплине «Теоретические Основы Электротехники».
- •Дать понятие о формах материи: вещество и поле. Охарактеризовать электромагнитное поле как особую форму материи.
- •Дать понятие силовой и энергетической характеристики электрического поля.
- •Сформулировать закон Кулона. Охарактеризовать основные характеристики электрического поля: напряженность, электрический потенциал, электрическое напряжение.
- •Охарактеризовать проводниковые материалы, привести примеры.
- •Дать понятие электропроводимости. Изложить классификацию веществ по степени электропроводимости.
- •Объяснить физическое явление электрического тока и интенсивность электрического тока.
- •Изложить понятие электрического тока в проводниках.
- •Объяснить понятие удельная электрическая проводимость и сопротивление, электрическая проводимость и сопротивления проводников.
- •Сформулировать закон Ома. Охарактеризовать зависимость сопротивления проводников от температуры. Дать понятие о сверхпроводимости.
- •Охарактеризовать элементы электрических цепей, объяснить их классификацию.
- •Дать понятие электродвижущей силы (эдс), мощности и коэффициента полезного действия источника электрической энергии.
- •Изложить понятие энергии, мощности и коэффициента полезного действия приемника электрической энергии.
- •Изложить сущность закона Джоуля - Ленца. Объяснить его применение.
- •Охарактеризовать режимы работы электрических цепей, объяснить работу электрической цепи в номинальном и рабочем режиме.
- •Проанализировать условия режимов холостого хода и короткого замыкания в электрической цепи.
- •Составить и охарактеризовать схемы замещения источников эдс и тока, приемников электрической энергии.
- •Изложить цели и задачи расчета электрических цепей. Сформулировать законы Кирхгофа.
- •Объяснить свойства последовательного соединения пассивных элементов.
- •Дать понятие потенциальной диаграммы электрической цепи и изложить особенности ее построения.
- •Нарисовать разветвленную электрическую цепь с двумя узлами. Изложить свойства параллельного соединения пассивных элементов.
- •Охарактеризовать особенности смешанного соединения пассивных элементов. Определить порядок расчета электрической цепи при смешанном соединения резисторов.
- •Изложить особенности расчета электрических цепей методом эквивалентных преобразований (метод свертывания электрической цепи).
- •Объяснить методику расчета сложных электрических цепей постоянного тока методом узловых и контурных уравнений (метод законов Кирхгофа).
- •Объяснить методику расчета сложных электрических цепей постоянного тока методом контурных токов.
- •Объяснить методику расчета сложных электрических цепей постоянного тока методом наложения токов.
- •Изложить порядок расчета сложных цепей постоянного тока методом эквивалентного генератора.
- •Изложить порядок расчета сложных цепей постоянного тока методом узлового напряжения.
- •Объясните порядок и особенности преобразования треугольника сопротивлений в эквивалентную звезду.
- •Объясните порядок и особенности преобразования звезды сопротивлений в эквивалентный треугольник.
- •Проанализировать особенности графического расчета нелинейных электрических цепей постоянного тока при последовательном соединении элементов.
- •Проанализировать особенности графического расчета нелинейных электрических цепей постоянного тока при параллельном соединении элементов.
- •Проанализировать особенности графического расчета нелинейных электрических цепей постоянного тока при смешанном соединении элементов.
- •Дать определение электрической емкости и конденсатора. Охарактеризовать применение конденсатора.
- •Охарактеризовать явление электрического пробоя и электрической прочности диэлектрика.
- •Привести примеры электростатических цепей и проанализировать особенности их расчета.
- •Охарактеризовать понятие проводника с током в магнитном поле.
- •Дать понятие магнитного потока, потокосцепления. Охарактеризовать работу по перемещению проводника с током в магнитном поле.
- •Изложить основные магнитные свойства вещества. Объяснить процесс намагничивания и намагниченность веществ.
- •Охарактеризовать намагничивание ферромагнитных материалов. Объяснить явление магнитного гистерезиса.
- •Дать определение магнитных цепей, проанализировать особенности расчета магнитных цепей.
- •Проанализировать особенности расчета неразветвленной однородной магнитной цепи.
- •Объяснить явление электромагнитной индукции. Изложить закон электромагнитной индукции.
- •Обосновать применение закона электромагнитной индукции на практике.
- •Изложить сущность явления переменного тока. Объяснить принцип получения синусоидальной эдс.
- •Изложить принцип действия генератора переменного тока.
- •Записать уравнения и графики синусоидальной эдс.
- •Дать характеристику параметров синусоидального тока (период, частота, амплитуда, фаза, начальная фаза, угловая частота).
- •Объяснить сущность изображения синусоидальных величин с помощью векторов.
- •Проанализировать правила сложения и вычитания синусоидальных величин с помощью векторов.
- •Объясните, что такое действующее и среднее значение переменного тока. Записать формулы для их вычисления.
- •Изложить основные параметры электрической цепи. Охарактеризовать цепь переменного тока с активным сопротивлением: напряжение, ток, мощность, векторная диаграмма.
- •Охарактеризовать цепь переменного тока с индуктивностью: напряжение, ток, мощность, векторная диаграмма.
- •Охарактеризовать цепь переменного тока с емкостью: напряжение, ток, мощность, векторная диаграмма.
- •Охарактеризовать понятие активного и реактивного сопротивления.
- •Охарактеризовать понятие активной, реактивной и полной мощности электрической цепи переменного тока.
- •Проанализировать особенности расчета неразветвленной цепи переменного тока. Нарисовать треугольники напряжений, сопротивлений и мощностей.
- •Проанализировать методику расчета неразветвленной цепи переменного тока с произвольным числом активных и реактивных элементов.
- •Объяснить правила построения топографической диаграммы неразветвленной цепи.
- •Проанализировать методику расчета разветвленной цепи переменного тока с двумя узлами с активным сопротивлением, индуктивностью и емкостью при различных соотношениях реактивных проводимостей.
- •Проанализировать методику расчета цепи переменного тока с двумя узлами с произвольным числом параллельных ветвей методом проводимостей.
- •Проанализировать методику расчета цепи переменного тока с двумя узлами с произвольным числом параллельных ветвей графоаналитическим методом.
- •Объяснить принцип компенсации реактивной мощности в электрических сетях. Объяснить понятие коэффициента мощности.
- •Изложить методы увеличения коэффициента мощности и его влияние на технико-экономические показатели электроустановок.
- •Изложить сущность выражения синусоидальных величин комплексными числами.
- •Записать комплексные сопротивления, проводимости, мощности и охарактеризовать их.
- •Записать законы Ома и Кирхгофа в символической форме.
- •Изложить сущность символического метода расчета электрических цепей переменного тока.
- •Объяснить явление резонанса напряжений: условие и признаки резонанса напряжений, резонансная частота.
- •Дать определение резонанса напряжений и проанализировать его достоинства и недостатки. Изложить особенности практического использование резонанса напряжений.
- •Объяснить явление резонанса токов: условия и признаки резонанса токов.
- •Дать определение резонанса токов, проанализировать его достоинства и недостатки. Изложить особенности практического использования резонанса токов.
- •Объяснить принцип получения трехфазной эдс. Проанализировать особенности трехфазной системы напряжений.
- •Изложить достоинства применения трехфазной системы переменного тока.
- •Изложить понятие симметричной нагрузки в трехфазной цепи при соединении обмоток генератора и фаз приемника звездой. Проанализировать фазные, линейные напряжения и токи, соотношения между ними.
- •Изложить понятие несимметричной нагрузки в трехфазной цепи при соединении фаз приемника звездой.
- •Нарисовать четырехпроводную трехфазную система. Изложить роль нулевого провода.
- •Изложить особенности расчета трехфазных цепей при соединении нагрузки звездой. Дать понятие мощности трехфазных цепей.
- •Дать понятие несимметричной нагрузки в трехфазной цепи при соединении обмоток генератора и фаз приемника треугольником.
- •Изложить особенности расчета трехфазной цепи потребителя при соединении «треугольником».
- •Изложить причины возникновения несинусоидальных эдс, токов и напряжений в электрических цепях.
- •Представить аналитическое выражение несинусоидальной величины в виде тригонометрического ряда.
- •Проанализировать особенности расчета электрических цепей с несинусоидальными токами (напряжениями).
- •Дать понятие о переходных процессах. Изложить первый и второй законы коммутации.
- •Проанализировать физические процессы в цепи с катушкой индуктивности при включение ее на постоянное напряжение.
- •Проанализировать физические процессы в цепи с катушкой индуктивности при отключении от источника постоянного напряжения.
- •Проанализировать физические процессы в цепи с конденсатором при включение его на постоянное напряжение.
- •Проанализировать физические процессы в цепи с конденсатором при отключении от источника постоянного напряжения.
Дать определение электрической емкости и конденсатора. Охарактеризовать применение конденсатора.
Электрическая ёмкость - характеристика проводника, мера его способности накапливать электрический заряд.
В теории электрических цепей ёмкостью называют взаимную ёмкость между двумя проводниками; параметр ёмкостного элемента электрической схемы, представленного в виде двухполюсника. Такая ёмкость определяется как отношение величины электрического заряда к разности потенциалов между этими проводниками.
Конденсатор - двухполюсник с определённым или переменным значением ёмкости и малой проводимостью; устройство для накопления заряда и энергии электрического поля.
Конденсатор является пассивным электронным компонентом. В простейшем варианте конструкция состоит из двух электродов в форме пластин (называемых обкладками), разделённых диэлектриком, толщина которого мала по сравнению с размерами обкладок. Практически применяемые конденсаторы имеют много слоёв диэлектрика и многослойные электроды, или ленты чередующихся диэлектрика и электродов, свёрнутые в цилиндр или параллелепипед со скруглёнными четырьмя рёбрами (из-за намотки).
Охарактеризовать явление электрического пробоя и электрической прочности диэлектрика.
Электрический пробой — лавинный пробой, связанный с тем, что носитель заряда на длине свободного пробега приобретает энергию, достаточную для ионизации молекул кристаллической решётки или газа и увеличивает концентрацию носителей заряда. При этом создаются свободные носители заряда (увеличивается концентрация электронов), которые вносят основной вклад в общий ток. Генерация носителей происходит лавинообразно.
Различают поверхностный пробой и объёмный пробой диэлектриков. У полупроводников существует разновидность поверхностного пробоя, так называемый шнуровой эффект.
Электрический пробой – это разрушение диэлектрика, обусловленное ударной ионизацией электронами из-за разрыва связей между атомами, ионами или молекулами. Происходит за время 10-5 – 10-8 с.
Епр при электрическом пробое зависит главным образом от внутреннего строения диэлектрика и практически не зависит: от температуры, частоты приложенного напряжения; геометрических размеров образца, вплоть до толщин 10-4 - 10-5 см.
На электрическую прочность диэлектриков значительное влияние оказывает неоднородность образующегося в них электрического поля, которая, в свою очередь, зависит от степени неоднородности строения самого твердого диэлектрика.
Епр воздуха около 3 МВ/м, наибольших значений Епр при электрическом пробое у твердых диэлектриков достигает 102 – 103 МВ/м, у тщательно очищенных жидких диэлектриков Епрсоставляет примерно 102 МВ/м.
Электрическая прочность — характеристика диэлектрика, минимальная напряжённость электрического поля, при которой наступает электрический пробой. Все газы, а также все твёрдые и жидкие диэлектрики обладают конечной электрической прочностью.
Привести примеры электростатических цепей и проанализировать особенности их расчета.
Методы расчета электрических цепей – непосредственно по законам Кирхгофа, методы контурных токов и узловых потенциалов – позволяют принципиально рассчитать любую схему. Однако их применение без использования введенных ранее топологических матриц рационально для относительно простых схем. Использование матричных методов расчета позволяет формализовать процесс составления уравнений электромагнитного баланса цепи, а также упорядочить ввод данных в ЭВМ, что особенно существенно при расчете сложных разветвленных схем.
