- •Содержание
- •Введение
- •1 Сварка полимеров. Виды сварки
- •1.1 Диффузионная сварка
- •1.1.1 Сварка нагретым инструментом
- •1.1.2 Сварка нагретым газом
- •1.1.3 Сварка с применением инфракрасного (ик) излучения [5]
- •1.1.4 Высокочастотная (вч) сварка
- •1.1.5 Ультразвуковая (уз) сварка
- •1.1.6 Сварка трением
- •1.1.7 Лазерная сварка [5, 4]
- •1.1.8 Сварка с помощью растворителей
- •1.2 Химическая сварка
- •1.2.1 Химическая сварка термопластов
- •1.2.2 Химическая сварка отвержденных реактопластов
- •2 Термоконтакная сварка полимеров
- •Заключение
- •Список литературы
1.1.6 Сварка трением
Сварка трением [4, 5] основана на нагреве контактирующих поверхностей термопластов в результате превращения механической энергии трения в тепловую. Низкая теплопроводность пластмасс локализует и сохраняет тепло в зоне трущихся поверхностей, где и образуется сварной шов. При этом способе механически снимается окисленный поверхностный слой полимера, вытесняются воздушные включения и другие примеси из зоны шва.
Одновременно с оплавлением поверхности свариваемых деталей не исключается механодеструкция полимера. В начальный период сварки процесс механодеструкции преобладает над процессом диффузии макромолекул, так как температура в зоне трения еще недостаточно высока. С увеличением продолжительности трения теплота накапливается, материал переходит в текучее состояние, и механодеструкция макромолекул прекращается. Продукты механодеструкции полимера входят в состав сварного шва и приводят к его естественному ослаблению по сравнению с материалом деталей.
Существуют три схемы сварки трением: вращением, вибротрением и промежуточная вращательно-вибрационная.
Сваркой вращением соединяют детали небольших габаритных размеров: стержни, трубы. Можно приваривать цилиндрические детали к плоским, фасонным. Достоинство метода - высокая скорость образования шва и высокая его прочность. Для большинства изделий из термопластов она составляет 60-80 % от прочности самого материала. Недостатки способа: ограниченность выбора геометрии и габаритных размеров изделий; трудность регулирования температуры материала шва; большое количество выдавливаемого материала в виде расплава. Указанных недостатков можно избежать, применив либо комбинированный способ (вращательно-вибрационный), либо только вибрационный.
Сущность вибрационного способа состоит в том, что прижатым поверхностям деталей сообщается возвратно-поступательное движение одной относительно другой. Сварка поверхностей происходит при частоте возвратно-поступательного движения 50-400 Гц, амплитуде 3-6 мм, давлении Р = 2-15 МПа, продолжительности - несколько секунд. Для данного способа сварки габаритные размеры детали и толщина стенки не играют роли.
1.1.7 Лазерная сварка [5, 4]
Лазерный луч фокусируется на свариваемых поверхностях деталей, в основном пленок толщиной 10-500 мкм. Можно так же сваривать и листы. Технология не отличается от технологии сварки ИК- излучением.
Лазерная сварка также является бесконтактной. Необходимая технологическая теплота направленно вводится в материал заготовки посредством высокоэффективного лазера на полупроводниковом диоде. При этом середина зоны соединения также может быть более интенсивно нагрета, чем краевые зоны. Таким образом, при сварке происходит интенсивное смешение расплава в зоне стыка, что способствует чрезвычайной прочности сварного шва. Тепловое расширение расплава обеспечивает усилие сваривания, необходимое для соединения предварительно фиксированных деталей.
В первую очередь, эго может быть отнесено к сварке соединения внахлест, при которой одна деталь должна быть прозрачной для лазерного луча, а вторая обладать хорошей способностью к поглощению. Таких свойств можно добиться с помощью цветных пигментов или другими добавками. Для выполнения сварки между обеими деталями необходимо добиться соединения с герметичным смыканием. В этом случае лазерный луч будет через прозрачную деталь попадать на поглощающую деталь, создавая необходимую тепловую энергию. За счет теплопроводности прозрачная деталь на стыковой поверхности также оплавляется. Ход шва и способ внесения энергии могут быть выбраны, поэтому не возникают ни термические, ни механические нагрузки.
Что касается геометрии и размеров свариваемых деталей, то здесь ограничений нет. Поэтому диапазон применения лазерной сварки простирается от мельчайших до крупногабаритных деталей.
