- •Билет 1
- •2, Рассмотрим виды защиты биотехнологических, процессов от микробов-загрязнителей.
- •3, Инсулин — полипептид с молекулярной массой около 5750, состоящий из 51 аминокислоты. Он имеет две цепочки - а и в, связанные друг с другом посредством двух дисульфидных мостиков.
- •Билет 2
- •Замедление роста
- •Билет 3
- •2, Клеточная инженерия
- •Технология гидроакустической кавитации.
- •Мембранная технология.
- •Билет 6
- •Билет 7
- •2,, Плазмиды — дополнительные факторы наследственности, расположенные в клетках вне хромосом и представляющие собой кольцевые (замкнутые) или линейные молекулы днк.
- •3. Выделяют два типа культивируемых растительных клеток: нормальные и опухолевые.
- •Методики культивирования одиночных растительных клеток
- •3.Витамины – это низкомолекулярные органические вещества, способные в очень низких концентрациях оказывать сильное и разнообразное
- •Билет 10
- •Билет 11
- •Билет 12
- •2,Сплайсинг рнк.
- •3,История открытия пенициллина
- •Билет 13
- •2, Иммобилизация ферментов
- •Билет 14
- •Билет 15
- •Билет№16
- •Билет №17
- •Билет №18
- •Билет №19.
- •Билет №20
- •Билет№22
- •Билет№23
- •2. Экстракция.
- •Некоторые аспекты уф-чувствительности бактериальных штаммов Escherichia coli
- •Билет 26. В№3.Получение моноклональных антител
- •Применение моноклональных антител
- •1. Приготовление питательных сред зависит от состава компонентов.
- •Интерферон в биотехнологии
- •Регуляция синтеза ферментов
- •Билет 29.
- •3, Методы сохранения генофонда
- •Билет 30. В № 1.
- •Билет 30. В № 3
Применение моноклональных антител
Наиболее широко используются моноклональные антитела в медицинской диагностике. Разработаны сумки-укладки для постановки диагнозов. Если к антителами присоединить радиоактивные или магнитоактивные материалы и ввести их в живой организм, то можно выявить в нем патологические зоны. Такие МКА присоединяются к пораженным болезнью клеткам организма, а соответствующие индикаторные материалы позволяют выяснить их местонахождение.
МКА используются и в процессах очистки веществ. Современные технологии основаны на присоединении антител к твердой матрице носителя. К ним добавляют смесь молекул, содержащую искомый антиген. Затем комплексы антиген - антитело отмываются от примесей, не связанных с матрицей. После разрушения ковалентных связей антиген - антитело в растворе остаются свободные антигены.
Если получить антитела определенного типа и иммунизировать ими животное, то образуются анти-антитела (анти-идиотипные антитела). Они действуют на иммунную систему как псевдоантиген и поэтому могут быть использованы для ее стимуляции. На этом принципе основано получение вакцин нового типа. Наборы МКА могут быть также предназначены для борьбы с аллергенами.
Моноклональные антитела и “мишенная” лекарственная терапия. Предполагается, что большое разнообразие раковых заболеваний обусловлено активацией эндогенных генов, вызванной химическими агентами, внутренними хромосомными перестройками. Эти гены кодируют определенные белки, и поэтому раковые клетки могут содержать уникальные белки на поверхности клетки. Возможно, именно эти белки участвуют в супрессии роста здоровых клеток. Инактивируя эти белки, можно тормозить рост раковых клеток.
Благодаря высокий специфичности МКА широко используются в качестве зондов для точного определения природы молекул поверхности клеток и клеточных органелл. С их помощью также можно проводить детекцию активности ферментов.
Методы иммуноферментного анализа применяют в диагностике вирусных заболеваний растений. Это позволяет сократить время получения безвирусного посадочного материала, отбирать новые вирусоустойчивые сорта. При генно-инженерных экспериментах можно быстро отбирать клоны - продуценты.
Билет 27.В №1.ФИТОГОРМО́НЫ (ростовые вещества), химические вещества, вырабатываемые в растениях и регулирующие их рост и развитие. Образуются главным образом в активно растущих тканях
на верхушках корней и стеблей. К фитогормонам обычно относят ауксины, гиббереллины и цитокинины, а иногда и ингибиторы роста, напр. абсцизовую кислоту. В отличие о гормонов животных, менее специфичны и часто оказывают свое действие в том же участке растения, где о бразуются. Основные гормоны растений — это органические соединения с молекулярной массой от 28 (этилен) до 346 (гибберелловая кислота). Многие фитогормоны и другие регуляторы роста растений представляют собой слабые кислоты. Индолилуксусная кислота является производным индола, синтезируется из триптофана в верхушке побега и передвигается вдоль стебля сверху вниз. Цитокинины являются производными аденина, синтезируются главным образом в кончиках корней и перемещаются оттуда во все органы растений по транспортным каналам. Гиббереллины представляют собой обширную группу близких по строению тетрациклических карбоновых кислот, относящихся к дитерпенам (см. Терпены). Они синтезируются во многих органах, особенно в интенсивно растущих: молодых листьях, прицветниках, частях цветков, формирующихся и прорастающих семенах и др. Свет стимулирует образование гиббереллинов. Абсцизовая кислота является сесквитерпеном (веществом с 15 атомами углерода), производным полиненасыщенного спирта фарнезола. Она образуется главным образом в листьях, а также в корневом чехлике двумя путями: либо синтезом из мевалоновой кислоты, либо за счет распада каротиноидов. Перемещение гиббереллинов и абсцизовой кислоты на короткие расстояния происходит путем диффузии, на дальние — по транспортным каналам. Этилен синтезируется из метионина через 1-аминоциклопропан-1-карбоновую кислоту, которая способна транспортироваться по растению. Этилен образуется во всех органах и тканях, но наиболее активно в зонах меристем, стареющих листьях и созревающих плодах, а также при стрессовых воздействиях или травмах. Многие синтетические вещества обладают таким же действием, как природные.
В присутствии ауксина цитокинины чрезвычайно активны при индуцировании деления растительных клеток в культуре тканей. Иногда они стимулируют также развитие почек в образовавшемся каллусе. Дифференциация в культуре тканей зависит преимущественно от относительной концентрации присутствующих ростовых веществ. Высокое молярное отношение цитокинина к ауксину приводит к образованию почек. Если концентрации цитокинина и ауксина примерно равны, то стимулируется рост недифференцированного каллуса. При высоком отношении ауксина к кинетину наблюдается тенденция к инициации роста корней. Чемоданы. Чемоданы-тележки - чемодан. Модные женские и мужские сумки.
В типичных системах с клеточным растяжением, таких, как колеоптиль овса и эпикотиль гороха, кинетин обычно ингибирует стимулированный ауксином продольный рост и стимулирует поперечный.
Обнаружение взаимодействия кинетина с ауксином потребовало систематического изучения других физиологических систем, таких, как апикальное доминирование, на которое, как известно, влияет ауксин. При этом было установлено, что локальное нанесение кинетина на репрессированные почки устраняет ингибирование и вызывает рост этих почек. Вентиляция, кондиционирование - монтаж приточной вентиляции.
Было также показано, что ингибирование роста боковых почек ауксином в действительности обусловлено индукцией образования в них этилена (см. гл. 10). Вместе с тем внесение цитокинина ингибирует синтез этилена. Развертывание молодых листьев также стимулируется цитокининами.
У взрослых растений синтез цитокининов происходит главным образом в корневой системе, откуда они по ксилеме транспортируются в надземную часть растения. Чем ниже на стебле расположены боковые почки, тем дальше они от источника ауксина, находящегося в апексе стебля, и тем ближе к источнику цитокининов в корнях. Так как апекс растения, проявляющего апикальное доминирование, в процессе роста удаляется от боковых почек, последние начинают распускаться в результате того, что цитокинин преодолевает влияние ауксина. Антагонизмом ауксина и цитокинина объясняется также образование 'ведьминой метлы' вследствие полного устранения нормального подавления роста покоящихся почек, отделенных от апекса лишь несколькими короткими междоузлиями. В природе это происходит тогда, когда гриб, индуцирующий образование 'ведьминой метлы', проникает в растение и вырабатывает вещества с активностью, характерной для цитокининов.
Действие цитокининов лежит в основе другого феномена, над которым долго ломали головы физиологи растений. Часто приходилось наблюдать, что если с растения, например табака, удалить листья, то содержание белка в них быстро снижается, а содержание растворимого азота возрастает. Предполагалось, что этим массированным разрушением белка по крайней мере частично объясняется короткий период жизни многих срезанных растений и их частей, особенно листьев. Случайно было обнаружено, что добавление кинетина в питательный раствор, в который погружены черешки листьев, срезанных с растения Xanthium, приводит к более длительному сохранению зеленого цвета листьев. Таким образом, цитокини-ны задерживают старение. Впоследствии было показано, что данный эффект обусловлен тем, что цитокинины способствуют поддержанию определенных уровней белка и нуклеиновой кислоты, вероятно, путем снижения скорости их распада, а также в результате сохранения целостности клеточной мембраны. Было отмечено, что нанесение цитокинина на листья интактных растений тоже задерживает их старение (рис. 9.31). Вероятно, цитокинин должен постоянно содержаться в воде, поступающей от корней к листьям, чтобы препятствовать старению последними
1)
Цитокинины
1)
2) 2) Ауксины
В №2. Биома́сса (биоматерия, биота)— совокупная масса растительных и животных организмов, присутствующих в биогеоценозе в момент наблюдения Глубинный метод производства ферментов
В этом случае микроорганизмы выращиваются в жидкой питательной среде. Технически более совершенен, чем поверхностный, так как легко поддается автоматизации и механизации. Концентрация фермента в среде при глубинном культивировании обычно значительно ниже, чем в водных экстрактах поверхностной культуры. Это вызывает необходимость предварительного концентрирования фильтрата перед его выделением.
При глубинном культивировании продуцентов ферментов выделяют, как и в любом биотехнологическом процессе, 5 этапов.
