- •Билет 1
- •2, Рассмотрим виды защиты биотехнологических, процессов от микробов-загрязнителей.
- •3, Инсулин — полипептид с молекулярной массой около 5750, состоящий из 51 аминокислоты. Он имеет две цепочки - а и в, связанные друг с другом посредством двух дисульфидных мостиков.
- •Билет 2
- •Замедление роста
- •Билет 3
- •2, Клеточная инженерия
- •Технология гидроакустической кавитации.
- •Мембранная технология.
- •Билет 6
- •Билет 7
- •2,, Плазмиды — дополнительные факторы наследственности, расположенные в клетках вне хромосом и представляющие собой кольцевые (замкнутые) или линейные молекулы днк.
- •3. Выделяют два типа культивируемых растительных клеток: нормальные и опухолевые.
- •Методики культивирования одиночных растительных клеток
- •3.Витамины – это низкомолекулярные органические вещества, способные в очень низких концентрациях оказывать сильное и разнообразное
- •Билет 10
- •Билет 11
- •Билет 12
- •2,Сплайсинг рнк.
- •3,История открытия пенициллина
- •Билет 13
- •2, Иммобилизация ферментов
- •Билет 14
- •Билет 15
- •Билет№16
- •Билет №17
- •Билет №18
- •Билет №19.
- •Билет №20
- •Билет№22
- •Билет№23
- •2. Экстракция.
- •Некоторые аспекты уф-чувствительности бактериальных штаммов Escherichia coli
- •Билет 26. В№3.Получение моноклональных антител
- •Применение моноклональных антител
- •1. Приготовление питательных сред зависит от состава компонентов.
- •Интерферон в биотехнологии
- •Регуляция синтеза ферментов
- •Билет 29.
- •3, Методы сохранения генофонда
- •Билет 30. В № 1.
- •Билет 30. В № 3
Билет 12
2,Сплайсинг рнк.
СПЛАЙСИНГ (от англ. splice-соединять, сращивать), удаление из молекулы РНК нитронов (участков РНК, которые практически не несут генетич. информации) и соединение оставшихся участков, несущих генетич. информацию (экзо-нов), в одну молекулу.
СПЛАЙСИНГ-один из этапов образования функциональноактивных молекул РНК (процессинг РНК) из их предшественников, который осуществляется после завершения транскрипции (синтез РНК на ДНК-матрице). В результате удаления каждого интрона происходит разрыв двух фосфодиэфирных связей с последующим образованием одной новой
Многие гены состоят из экзонов - кодирующие участки и интронов – некодирующие участки. При транскрипции с гена считывается РНК несущая как экзоны, так и интроны. В процессе сплайсинга интроны вырезаются, а экзоны сшиваясь образуют зрелую РНК.
3,История открытия пенициллина
В 1928 году ученый А. Флеминг провел обычный опыт в ходе длительного исследования защиты организма человека от инфекционных заболеваний. Вырастив штаммы микроорганизмов стафилококков, ученый увидел, что многие чашки для культивирования поражены обычной плесенью Penicillium, это вещество, благодаря которому хлеб при длительном лежании приобретает зеленый цвет. Вокруг некоторых пятен плесени ученый обнаружил область без бактерий. Отсюда Флеминг вывел, что обычная плесень синтезирует вещество, уничтожающее возбудители инфекции. Далее он обнаружил молекулу, которую сегодня мы называем пенициллином. Принцип действия пенициллина в том, что он тормозит или подавляет химические реакции, необходимые для жизни возбудителя инфекции. Антибиотик не влияет на клетки человека и животных, так как внешние оболочки наших клеток разительно отличаются от клеток бактерий.
фенилуксусная кислота и многие ее производные — предшественники биосинтеза пенициллина
при добавлении к среде производных фенилуксусной кислоты наблюдается увеличение выхода пенициллина и меняется соотношение образующихся компонентов
Добавление фенилуксусной кислоты в среду при концентрации выше 500 мкг/мл угнетает рост мицелия гриба особенно в первые 24 ч его развития. Добавление же этой кислоты к субстрату в количестве от 100 до'500 мкг/мл, наоборот, стимулирует рост мицелия плесневого гриба (рис. 53). Оптимальной концентрацией фенилуксусной кислоты, добавленной через 24 ч после начала развития P. chrysogenum, обеспечивающей наибольший выход пенициллина (по данным через 72 ч развития гриба), будет 500—1000 мкг/мл (рис. 54). Одновременное внесение в среду фенилуксусной кислоты в концентрации 1000 мкг/мл и 1 % подсолнечного масла приводит к полному прекращению процесса биосинтеза пенициллина при нормальном росте гриба.
Билет 13
2, Иммобилизация ферментов
Классификация носителей для ферментов
Для получения иммобилизованных ферментов используется ограниченное число как органических, так и неорганических носителей. К носителям предъявляются следующие требования (Дж.Порат, 1974):
высокая химическая и биологическая стойкость;
высокая химическая прочность;
достаточная проницаемость для фермента и субстратов, пористость, большая удельная поверхность;
возможность получения в виде удобных в технологическом отношении форм (гранул, мембран);
легкая активация;
высокая гидрофильность;
невысокая стоимость.
Классификация носителей схематично представлена на рисунке 4.
Классификация носителей для иммобилизованных ферментов
Следует отметить, что органические носители (как низко-, так и высокомолекулярные) могут быть природного или синтетического происхождения. Природные полимерные органические носители делят в соответствии с их биохимической классификацией на 3 группы: полисахаридные, белковые и липидные.
Синтетические полимеры также можно разделить на группы в связи с химическим строением основной цепи макромолекул: полиметиленовые, полиамидные, полиэфирные.
Для иммобилизации ферментов наиболее широко используются природные полисахариды и синтетические носители полиметильного типа, остальные применяются значительно реже. Большое значение природных полимеров в качестве носителей для иммобилизации объясняется их доступностью и наличием реакционно-способных функциональных групп, легко вступающих в химические реакции. Характерной особенностью этой группы носителей также является их высокая гидрофильность. Недостаток природных полимеров - неустойчивость к воздействию микроорганизмов и довольно высокая стоимость.
Наиболее часто для иммобилизации используются такие полисахариды, как целлюлоза, декстран, агароза и их производные. Целлюлоза гидрофильна, имеет много гидроксильных групп, что позволяет модифицировать её, замещая эти группы. Для увеличения механической прочности целлюлозу гранулируют путем частичного гидролиза, в результате которого разрушаются аморфные участки. На их место для сохранения пористости между кристаллическими участками вводят химические сшивки. Гранулированную целлюлозу довольно легко превратить в различные ионообменные производные, такие как ДЭАЭ-целлюлоза, КМЦ и т.д.
Хорошим носителем считается агар. Его свойства улучшаются после химической сшивки, например, диэпоксидными соединениями. Такой агар становится устойчивым к нагреванию, прочен, легко модифицируется.
Широкое распространение получил метод включения ферментов и клеток в полиакриламидный гель, имеющий жесткую пространственную сетчатую структуру. Полиакриламидный гель устойчив к химическим воздействиям. Очень интересную группу представляют полиамидные носители. Это группы различных гетероцепных полимеров с повторяющейся амидной группой -С(О)-NH-. Например, полимеры на основе N-винилпирролидона используются для получения иммобилизованных ферментов, способных медленно распадаться в организме. Кроме того, они биологически инертны, что особенно важно при использовании в медицинских целях. Существенным недостатком большинства полимерных носителей является их способность накапливаться в организме. В этом отношении предпочтение отдается природным полимерам, которые гидролизуются ферментами. Поэтому в состав лекарственных препаратов часто входит декстран, а из синтетических носителей - полимеры на основе N-винилпирролидона. В настоящее время ведутся эксперименты по созданию синтетических полимеров, расщепляющихся с образованием нетоксичных продуктов обмена.
Методы иммобилизации ферментов
Существует два основных метода иммобилизации ферментов: физический и химический.
Физическая иммобилизация ферментов представляет собой включение фермента в такую среду, в которой для него доступной является лишь ограниченная часть общего объема. При физической иммобилизации фермент не связан с носителем ковалентными связями. Существует четыре типа связывания ферментов:
- адсорбция на нерастворимых носителях;
- включение в поры геля;
- пространственное отделение фермента от остального объема реакционной системы с помощью полупроницаемой перегородки (мембраны);
- включение в двухфазную среду, где фермент растворим и может находиться только в одной из фаз.
Перечисленные подходы проиллюстрированы рисунке 5.
Рис. 5. Способы иммобилизации ферментов: а - адсорбция на нерастворимых носителях, б – включение в поры геля, в – отделение фермента с помощью полупроницаемой мембраны, г – использование двухфазной реакционной среды
В медицине иммобилизованные ферменты открыли путь к созданию лекарственных препаратов пролонгированного действия со сниженной токсичностью и аллергенностью. Иммобилизационные подходы способствуют решению проблемы направленного транспорта лекарств в организме.
3,Генетическая информация - программа свойств организма, получаемая от предков и заложенная в наследственных структурах в виде генетического кода. Генетическая информация определяет морфологическое строение, рост, развитие, обмен веществ, психический склад, предрасположенность к заболеваниям и генетические пороки организма.
Современная биология утверждает, что одна из главных черт жизни - это самовоспроизводимость. Самовоспроизводимость - это способность живого организма к размножению, рождению и выращиванию себе подобных. Как известно, генетическая (наследственная) информация записана в цепи молекулы ДНК в виде последовательности более простых молекул - нуклеотидных остатков, содержащих одно из четырех оснований: аденин (А), гуанин (G) - пуриновые основания, цитозин (С) и тимин (Т) - пиримидиновые основания.
Генетический код
Генетическая информация заключена в последовательности нуклеотидов. Это значит, что строго определенная последовательность нуклеотидов соответствует определенной аминокислоте, а определенный порядок расположения и количество аминокислот соответствует, в свою очередь, определенной структуре белка. Таким образом, иРНК несет генетическую информацию в виде генетического кода, который с помощью четырех символов (четыре нуклеотида А, Г, Ц, У) задает любую из 20 аминокислот. Свойства генетического кода: а) Код триплетен Каждая из 20 аминокислот зашифрована последовательностью 3-х нуклеотидов. Эта последовательность называется кодоном. б) Код вырожден. Каждая аминокислота кодируется более, чем одним кодоном (от 2 до 6 кодонов на одну аминокислоту). в) Код однозначен. Каждый кодон соответствует только одной аминокислоте. г) Генетический код универсален, т.е. един для всех живых организмов планеты.
Таким образом, ген представляет собой чередование "слов из трех букв" - кодонов, образованных из четырехбуквенного алфавита.
Необходимо особо подчеркнуть универсальность генетического кода - с его помощью закодирована вся информация и о простейшем одноклеточном организме, и о человеке. Но в первом случае можно было обойтись и более простым кодом, а во-втором - лучше было бы использовать более совершенный (сложный) код. Поэтому единство генетического кода служит очень весомым аргументом в пользу единого эволюционного пути всего живого на Земле.
Достижения генной инженерии.
Технологии генной инженерии разрабатываются не очень много времени, они имеют крупные достижения и в медицине, и в сельском хозяйстве. Методом генной инженерии получен уже ряд препаратов, в том числе инсулин человека и противовирусный препарат интерферон. Около 200 новых диагностических препаратов уже введены в медицинскую практику, и более 100 генно-инженерных лекарственных веществ находится на стадии клинического изучения. В сельском хозяйстве с помощью рекомбинантной ДНК могут быть получены трансгенные растения, например сорта культурных растений, устойчивые к засухе, холоду, болезням, насекомым-вредителям и гербицидам. Несколько слов о перспективах генной инженерии. На основе детального анализа возможностей и реальных достижений генной инженерии составлены научные прогнозы на начало ХХI века. Высказаны, например, надежды, что в ближайшие годы будут разработаны препараты для лечения такого опасного заболевания, как СПИД, к 2009 году будут определены гены, которые связаны со злокачественными новообразованиями, а к 2010 году будут установлены механизмы возникновения почти всех видов рака. К 2013 году завершится разработка препаратов, предотвращающих рак. Не менее важна сегодня генная диагностика. Обычно молекулярная диагностика проводится по белкам, и, как правило, с помощью других белков-антител. Недостатки такой диагностики - обнаружение болезни на поздней стадии. Но теперь можно диагностировать и по генам (ДНК), и по синтезированным на них РНК еще до того, как в организме начали синтезироваться и накапливаться чужеродные белки. Не имея возможности детально останавливаться на генной терапии, кратко перечислим некоторые проблемы, которыми занимаются ученые: доставка генов к клеткам-мишеням организма и нуклеиновых кислот внутрь клеток, блокировка или разрушение вредного гена либо блокировка продуцируемой им РНК с помощью антисмысловых ДНК или РНК, введение нового активного гена или регулятора активности гена. Лечение наследственных болезней целиком зависит от успехов в этом направлении, введение генов или комплексов генов, блокирующих клеточное деление или вызывающих клеточную смерть, как средство кардинальной раковой терапии. Отметим также важность биотехнологии для техники: например, создание биосенсоров на основе биологических макромолекул или конструирование биологически возобновляемых источников энергии.
Клонирование животных.
Напомним, что клонирование в биологии - метод получения нескольких идентичных организмов путем бесполого (в том числе вегетативного) размножения. Эти копии должны обладать идентичной наследственной информацией, т.е. нести идентичный набор генов. Однако сейчас термин "клонирование" обычно используется в более узком смысле и означает копирование клеток, генов, антител и даже многоклеточных организмов в лабораторных условиях. Появившиеся в результате бесполого размножения экземпляры по определению генетически одинаковы, однако и у них можно наблюдать наследственную изменчивость, обусловленную случайными мутациями или создаваемую искусственно лабораторными методами. Наибольшее интерес представляет клонирование многоклеточных организмов, которое стало возможным благодаря успехам генной инженерии. Создавая особые условия и вмешиваясь в структуру ядра клетки специалисты заставляют развиваться её в нужную ткань или даже в целый заранее намеченный организм. Причём открыты не только методы воспроизведения того организма, из которого клетка была взята, но и другого организма - того, от которого был взят только генетический материал. Появилась принципиальная возможность воспроизведения даже умершего организма. И даже тогда, когда от него остались минимальные части - лишь бы из них можно было выделить генетический материал.
Клонирование животных возможно с помощью экспериментальных манипуляций с яйцеклетками (ооцитами) и ядрами соматических клеток животных in vitro и in vivo подобно тому, как в природе появляются однояйцевые близнецы. В окончательном виде проблема клонирования животных была решена группой Вильмута в 1997, когда родилась овца по кличке Долли - первое млекопитающее, полученное из ядра взрослой соматической клетки: собственное ядро ооцита было заменено на ядро клетки из культуры эпителиальных клеток молочной железы взрослой лактирующей овцы
Типичная
схема клонирования животного на примере
овечки Долли. Донором ядра была взрослая
клетка, взятая из молочной железы одной
овцы (справа). Ядро при помощи электрического
импульса смешали с яйцеклеткой с
удалённым ядром от другой особи (слева).
Ооцит пересадили суррогатной матери,
из него развилась Долли, клон донора
ядра (иллюстрация с сайта
allthingsstemcell.com).
Различают полное и частичное клонирование организмов. При полном воссоздаётся весь организм целиком, при частичном - организм воссоздаётся - соответственно - не полностью. Например, лишь те или иные его ткани. Одно из перспективных применений клонирования тканей - клеточная терапия в медицине. Такие клетки могли бы компенсировать недостаток и дефекты собственных тканей организма и не отторгаться при трансплантации. Это так называемое репродуктивное и терапевтическое клонирование.
