- •Вопрос1.Основы зонной теории строения твердого тела.
- •Вопрос2. Особенности и физические свойства полупроводниковых материалов.
- •Вопрос3. Примесные полупроводники. Принципы получения. Разновидности.
- •Вопрос4.Полупроводники n-типа. Принцип получения. Особенности.
- •Вопрос5.Полупроводники p-типа. Принцип получения. Оссобености.
- •Полупроводник — материал, без которого не мыслим современный мир техники и электроники. Полупроводники проявляют свойства металов и неметаллов в тех или иных условиях.
- •Вопрос6. Зависимость проводимости временных полупроводников от температуры.
- •Вопрос7.Дрейфовый и диффуционные токи в полупроводнике.
- •Вопрос8.Контакт между полупроводниками разных типов. Образование электронно-дырочного перехода.
- •Вопрос9. P-n переход под действием внешнего электромагнитного поля. Свойства p-n перехода при прямом включении.
- •Вопрос10. P-n переход под действием внешнего электромагнитного поля. Свойства p-n перехода при обратном включении.
- •Вопрос11. Виды пробоя p-n перехода их причины и ограничения.
- •Вопрос12.Вольт Амперная Характеристика p-n перехода.
- •Вопрос13.Температурные и частотные свойства p-n перехода.
- •Вопрос14.Полупроводниковые диоды. Определение . Классификация. Маркировка.
- •Типы диодов по назначению:
- •Типы диодов по частотному диапазону[править | править вики-текст]
- •Типы диодов по размеру перехода[править | править вики-текст]
- •Типы диодов по конструкции[править | править вики-текст]
- •Вопрос15. Выпрямительный диод. Конструкция. Уго. Вах . Принцип работы. Основные свойства и параметры. Маркировка.
- •Вопрос16. Высокочастотные диоды. Конструкция. Вах. Основные параметры . Маркеровка.
- •Вопрос17. Кремневые стабилитроны и стабилитроны. Уго. Вах. Принцип работы. Основные параметры. Маркировка.
- •Основные параметры стабилитронов и их типовые значения
- •Вопрос18.Схема простейшего стабилизатора напряжения на стабилитроне.
- •Вопрос19. Маркировка и уго полупроводниковых диодов.
- •Вопрос20.Классификация и маркировка транзисторов.
- •Вопрос21.Устройство биполярных транзисторов. Назначение.
- •Вопрос22.Принцип действия биполярного транзистора.
- •Вопрос23. Режимы работы транзистора. Нормальный активный режим[править | править вики-текст]
- •Инверсный активный режим[править | править вики-текст]
- •Режим насыщения[править | править вики-текст]
- •Режим отсечки[править | править вики-текст]
- •Барьерный режим[править | править вики-текст]
- •Вопрос24.Схема включения транзистора с общей базой. Оссобености. Основные характеристики.
- •Вопрос25.Схема включения транзистора с общим эмиттером. Особенности. Основные параметры.
- •Вопрос26.Схема включения тразистора с общим коллектором. Оссобености. Основные характеристики.
- •Вопрос27. Транзистор, включенный по схеме с общей базой в динамическом режиме. Оссобености работы. Характеристики.
- •Вопрос28.Транзистор. Включенный по схеме с общим эмиттером в динамическом режиме. Оссобености работы. Динамические характеристики.
- •Вопрос29. Простейшая схема усилителя мощности с резистивной нагрузкой.
- •Вопрос30.Температурные и частотные свойства транзисторов.
- •Вопрос31. Биполярный транзистор как активный четырёхполюсник. H-параметры транзистора.
- •Параметры транзистора как четырехполюсника. H-параметры
- •Вопрос32.Полевой транзистор. Конструктивные особенности. Основные характеристики. Уго.
- •Вопрос39
- •По назначению
- •Вопрос40
- •Вопрос41
- •Вопрос42
- •Вопрос43.
- •Вопрос44.
- •Вопрос45. Однотактный трансформаторный каскад
- •Вопрос46.
- •Вопрос47.
- •Вопрос48
Вопрос4.Полупроводники n-типа. Принцип получения. Особенности.
По виду проводимости полупроводники подразделяют на n-тип и р-тип. Полупроводник n-типа имеет примесную природу и проводит электрический ток подобно металлам. Примесные элементы, которые добавляют в полупроводники для получения полупроводников n-типа, называются донорными. Термин «n-тип» происходит от слова «negative», обозначающего отрицательный заряд, переносимый свободным электроном.
Свойства полупроводников зависят от способа получения, так как различные примеси в процессе роста могутизменить их. Наиболее дешёвый способ промышленного получения монокристаллического технологическогокремния — метод Чохральского. Для очистки технологического кремния используют также метод зоннойплавки.
Для получения монокристаллов полупроводников используют различные методы физического и химическогоосаждения. Наиболее прецизионный и дорогой инструмент в руках технологов для ростамонокристаллических плёнок — установки молекулярно-лучевой эпитаксии, позволяющей выращиватькристалл с точностью до монослоя.
Вопрос5.Полупроводники p-типа. Принцип получения. Оссобености.
Полупроводник p-типа, кроме примесной основы, характеризуется дырочной природой проводимости. Примеси, которые добавляют в этом случае, называются акцепторными. «p-тип» происходит от слова «positive», обозначающего положительный заряд основных носителей.
Исследуя свойства полупроводниковых элементов и материалов, изучая свойства контакта проводника и полупроводника, экспериментируя в изготовлении полупроводниковых материалов, Лосев 1920-х годах создал прототип современного светодиода.
Полупроводник — материал, без которого не мыслим современный мир техники и электроники. Полупроводники проявляют свойства металов и неметаллов в тех или иных условиях.
Концентрация дырок в валентной зоне определяется температурой, концентрацией акцепторов, положением акцепторного уровня над верхом валентной зоны, эффективной плотностью уровней в валентной зоне.
Вопрос6. Зависимость проводимости временных полупроводников от температуры.
Температурная зависимость электропроводности примесных полупроводников более сложная, чем собственных . Это связано как с генерацией носителей заряда, так и с механизмом их рассеяния.
С увеличением температуры число носителей, поставляемых примесями, возрастает, пока не истощатся электронные ресурсы примесных атомов
Увеличение подвижности свободных носителей заряда с повышением температуры объясняется тем, что чем выше температура, тем больше тепловая скорость движения свободного носителя υ. Однако при дальнейшем увеличении температуры усиливаются тепловые колебания решетки и носители заряда начинают все чаще с ней сталкиваться, подвижность падает.
Электрическое сопротивление с ростом температуры возрастает; в полупроводниках же рост температуры сопровождается быстрым увеличением числа электронов в зоне проводимости и, следовательно, уменьшением электрического сопротивления.
Вопрос7.Дрейфовый и диффуционные токи в полупроводнике.
Электрический ток может возникнуть в полупроводнике только при направленном движении носителей заряда, которое создается либо под воздействием электрического поля (дрейф), либо вследствие неравномерного распределения носителей заряда по объему кристалла (диффузия). Если электрическое поле отсутствует, и носители заряда имеют в кристалле равномерную концентрацию, то электроны и дырки совершают непрерывное хаотическое тепловое движение. В результате столкновения носителей заряда друг с другом и с атомами кристаллической решетки скорость и направление их движения все время изменяются, так что тока в кристалле не будет
Направленное движение носителей заряда под действием сил электрического поля называют дрейфом, а вызванный этим движением ток – дрейфовым током. При этом характер тока может быть электронным, если он вызван движением электронов, или дырочным, если он создается направленным перемещением дырок.
Средняя скорость носителей заряда в электрическом поле прямо пропорциональна напряженности электрического поля:
Направленное движение носителей заряда из слоя с более высокой их концентрацией в слой, где концентрация ниже, называют диффузией, а ток, вызванный этим явлением, – диффузионным током. Этот ток, как и дрейфовый, может быть электронным или дырочным.
Степень неравномерности распределения носителей заряда характеризуется градиентом концентрации; его определяют как отношение изменения концентрации к изменению расстояния, на котором оно происходит. Чем больше градиент концентрации, т.е. чем резче она изменяется, тем больше диффузионный ток..
