- •Вопрос1.Основы зонной теории строения твердого тела.
- •Вопрос2. Особенности и физические свойства полупроводниковых материалов.
- •Вопрос3. Примесные полупроводники. Принципы получения. Разновидности.
- •Вопрос4.Полупроводники n-типа. Принцип получения. Особенности.
- •Вопрос5.Полупроводники p-типа. Принцип получения. Оссобености.
- •Полупроводник — материал, без которого не мыслим современный мир техники и электроники. Полупроводники проявляют свойства металов и неметаллов в тех или иных условиях.
- •Вопрос6. Зависимость проводимости временных полупроводников от температуры.
- •Вопрос7.Дрейфовый и диффуционные токи в полупроводнике.
- •Вопрос8.Контакт между полупроводниками разных типов. Образование электронно-дырочного перехода.
- •Вопрос9. P-n переход под действием внешнего электромагнитного поля. Свойства p-n перехода при прямом включении.
- •Вопрос10. P-n переход под действием внешнего электромагнитного поля. Свойства p-n перехода при обратном включении.
- •Вопрос11. Виды пробоя p-n перехода их причины и ограничения.
- •Вопрос12.Вольт Амперная Характеристика p-n перехода.
- •Вопрос13.Температурные и частотные свойства p-n перехода.
- •Вопрос14.Полупроводниковые диоды. Определение . Классификация. Маркировка.
- •Типы диодов по назначению:
- •Типы диодов по частотному диапазону[править | править вики-текст]
- •Типы диодов по размеру перехода[править | править вики-текст]
- •Типы диодов по конструкции[править | править вики-текст]
- •Вопрос15. Выпрямительный диод. Конструкция. Уго. Вах . Принцип работы. Основные свойства и параметры. Маркировка.
- •Вопрос16. Высокочастотные диоды. Конструкция. Вах. Основные параметры . Маркеровка.
- •Вопрос17. Кремневые стабилитроны и стабилитроны. Уго. Вах. Принцип работы. Основные параметры. Маркировка.
- •Основные параметры стабилитронов и их типовые значения
- •Вопрос18.Схема простейшего стабилизатора напряжения на стабилитроне.
- •Вопрос19. Маркировка и уго полупроводниковых диодов.
- •Вопрос20.Классификация и маркировка транзисторов.
- •Вопрос21.Устройство биполярных транзисторов. Назначение.
- •Вопрос22.Принцип действия биполярного транзистора.
- •Вопрос23. Режимы работы транзистора. Нормальный активный режим[править | править вики-текст]
- •Инверсный активный режим[править | править вики-текст]
- •Режим насыщения[править | править вики-текст]
- •Режим отсечки[править | править вики-текст]
- •Барьерный режим[править | править вики-текст]
- •Вопрос24.Схема включения транзистора с общей базой. Оссобености. Основные характеристики.
- •Вопрос25.Схема включения транзистора с общим эмиттером. Особенности. Основные параметры.
- •Вопрос26.Схема включения тразистора с общим коллектором. Оссобености. Основные характеристики.
- •Вопрос27. Транзистор, включенный по схеме с общей базой в динамическом режиме. Оссобености работы. Характеристики.
- •Вопрос28.Транзистор. Включенный по схеме с общим эмиттером в динамическом режиме. Оссобености работы. Динамические характеристики.
- •Вопрос29. Простейшая схема усилителя мощности с резистивной нагрузкой.
- •Вопрос30.Температурные и частотные свойства транзисторов.
- •Вопрос31. Биполярный транзистор как активный четырёхполюсник. H-параметры транзистора.
- •Параметры транзистора как четырехполюсника. H-параметры
- •Вопрос32.Полевой транзистор. Конструктивные особенности. Основные характеристики. Уго.
- •Вопрос39
- •По назначению
- •Вопрос40
- •Вопрос41
- •Вопрос42
- •Вопрос43.
- •Вопрос44.
- •Вопрос45. Однотактный трансформаторный каскад
- •Вопрос46.
- •Вопрос47.
- •Вопрос48
Вопрос1.Основы зонной теории строения твердого тела.
Зонная теория твёрдого тела — квантовомеханическая теория движения электронов в твёрдом теле.
В соответствии с квантовой механикой свободные электроны могут иметь любую энергию — их энергетический спектр непрерывен. Электроны, принадлежащие изолированным атомам, имеют определённые дискретные значения энергии. В твёрдом теле энергетический спектр электронов существенно иной, он состоит из отдельных разрешённых энергетических зон, разделённых зонами запрещённых энергий.
В основе зонной теории лежат следующие главные приближения[1]:
Твёрдое тело представляет собой идеально периодический кристалл.
Равновесные положения узлов кристаллической решётки фиксированы, то есть ядра атомов считаются неподвижными (адиабатическое приближение). Малые колебания атомов вокруг равновесных положений, которые могут быть описаны как фононы, вводятся впоследствии как возмущение электронного энергетического спектра.
Многоэлектронная задача сводится к одноэлектронной: воздействие на данный электрон всех остальных описывается некоторым усредненным периодическим полем.
Вопрос2. Особенности и физические свойства полупроводниковых материалов.
ПОЛУПРОВОДНИКОВЫЕ МАТЕРИАЛЫ - вещества с чётко выраженными свойствами полупроводников в широком интервале темп-р, включая комнатную.
Характеризуются
значениями уд. электропроводности
при T
300
К), промежуточными между уд.
электропроводностью металлов и
хороших диэлектриков.
В отличие от металлов, концентрация
подвижных носителей заряда в
П. м. значительно ниже концентрации
атомов, а электропроводность s возрастает
с ростом Т.
Для П. м. характерна высокая чувствительность
эл--физ. свойств к внеш. воздействиям
(нагрев, облучение, деформация и т. д.).
а также к содержанию примесей и структурных
дефектов. Характеристики важнейших П.
м. приведены в табл. 1.
По структуре П. м. делятся на кристаллические, аморфные, жидкие. Ряд органич. веществ также проявляет полупроводниковые свойства и составляет обширную группу органических полупроводников. Наиб. значение имеют неорганич. кристаллич. П. м., к-рые по хим. составу разделяются на элементарные, двойные, тройные и четверные хим. соединения, растворы и сплавы. Полупроводниковые соединения классифицируют по номерам групп периодич. табл. элементов, к к-рым принадлежат входящие в их состав элементы.
Основные группы кристаллических полупроводниковых материалов:
1.
Элементарные 2. Соединения типа
Имеют
в осн. кристаллич. Структуру
3. Соединения элементов.
Вопрос3. Примесные полупроводники. Принципы получения. Разновидности.
В примесных полупроводниках носители заряда создаются благодаря вводимой в кристалл примеси. Это делается для того чтобы создать полупроводник электронной или дырочной проводимости. В полупроводнике электронной проводимости (n -типа) основными носителями заряда являются электроны, а полупроводнике дырочной проводимости (p -типа) – дырки.
Чтобы создать примесный полупроводник n – типа, в кристалл вводятдонорную примесь. Донорной она называется потому, что добавляет электроны в структуру кристалла. Например, если в кремний ввести атом элемента из 5 группы таблицы Менделеева, то получится избыточный электрон. Это произойдёт потому, что кремний, имеющий 4 валентных электрона, образует ковалентную связь только с 4 электронами фосфора, который имеет 5 валентных электронов. Получается, один электрон окажется слабо соединённым со своим атомом, и достаточно даже небольшого воздействия, чтобы он его покинул и перешёл в зону проводимости. При этом атом примеси становится положительным ионом.
По характеру проводимости
1. Собственная проводимость
2. Примесная проводимость
По виду проводимости.
1.Электронные полупроводники
2.Дырочные полупроводники
