- •61. Система автоматической радиолокационной прокладки. Эксплуатационные требования и основные ограничения при использовании сарп для оценки опасности столкновения.
- •62. Анализ информации, получаемой от сарп. Режимы истинного и относительного движения, их достоинства и недостатки. Проигрывание маневра. Возможная опасность чрезмерного доверия сарп.
- •63. Назначение и использование укв радиостанции. Специальные каналы укв радиосвязи. Категории сообщений. Порядок передачи сообщений безопасности и бедствий.
- •64. Аварийные радиобуи epirb, sart. Назначение, использование, эксплуатационные проверки.
- •65. Назначение и состав ecdis. Понятие электронной навигационной карты (enc). Ограничения ecdis и опасность передоверия.
- •66. Использование доступных режимов в ecdis. Обнаружение неправильного отображения информации.
- •67. Различие между ecdis и ecs, растровыми и векторными картами.
- •68. Судовые лаги, их классификации Погрешности лагов и учет их в судовождении.
- •69. Судовые эхолоты. Принцип измерения глубин. Источники погрешностей и учет их в судовождении. Эксплутационные проверки.
- •70. Гирокомпасы как датчики направлений. Принципы работы гк, их особенности. Эксплутационные проверки.
- •71. Погрешности гк, их источники, методы компенсации и учет в различных условиях плавания.
- •72. Простой, следящий и автоматический режимы авторулевого. В чем заключается отличие.
- •73. Перечислить и объяснить назначение регулировок в авторулевом. Понимание работы авторулевого в автоматическом режиме.
- •75. Рейсовый чартер. Штурманская распилка, коносамент, грузовой манифест.
- •Права и обязанности сторон по договору рейсового чартера
- •Разновидности
- •Реквизиты коносамента
- •76. Международные и национальные нормативные документы по перевозке навалочных грузов.
- •77. Международные и национальные нормативные документы по перевозке опасных грузов.
- •78. Подготовка судна к судовым операциям. Транспортные характеристики судов, обеспечение и наблюдений за погрузкой, контроль состояния груза в рейсе.
- •80. Судовые документы и их статус. Надзор за техническим состоянием судна, переосвидетельствования.
- •81. Судовые метеоролические приборы. Измерение атмосферного давления, ветра, температуры воды и воздуха. Определение относительной влажности воздуха.
- •82. Общая циркуляция атмосферы. Фронтальные циклоны, стадии развития, пути движения.
- •83. Атмосферные фронты. Погодные условия при прохождении атмосферных фронтов.
- •84. Тропические циклоны, характерные траектории их движения. Особенности погоды. Рекомендации по маневрированию судна в зоне тропического циклона.
- •85. Приливные явления. Классификация приливов. Судовые пособия по приливам. Учет приливных явлений при движении судна, стоянке на якоре и у причала.
- •86. Факсимильные синоптические карты анализа и прогноза. Чтение факсимильных синоптических карт.
- •Теплый фронт
- •87. Международная конвенция stcw-95 c поправками.
- •88. Международная Конвенция solas с изменениями и дополнениями. Содержание Конвенции и её использование на судне.
- •ГлаваX. О мерах безопасности для высокоскоростных судов.
- •Глава XI. Специальные меры по повышению безопасности в море.
- •89. Международная Конвенция marpol – 73/78.
- •90. Кодекс Торгового Мореплавания Украины.
67. Различие между ecdis и ecs, растровыми и векторными картами.
Электронные картографические системы и ECDIS |
Электронно-картографические системы, полностью удовлетворяющие требованиям ECDIS и получившие официальное подтверждение, могут стоить несколько десятков тысяч долларов. Более дешевой альтернативой являются электронно-картографические системы (ЭКС или ECS), которые либо не полностью соответствуют требованиям ECDIS, либо не прошли процедуру официального подтверждения соответствования. В отличие от ECDIS, ЭКС не могут служить официальной заменой традиционных бумажных карт, однако предоставляемые ими возможности могут оказать существенное подспорье судоводителю и повысить безопасность мореплавания. |
В зависимости от метода цифрового представления информации карты ЭК делят на растровые и векторные.
В растровых картах (Rastrelectronicnavigationalchart - RNC) используется метод цифрового представления изображения карты в виде матрицы точек (пикселей). При таком представлении карты сведений об отдельных картографических объектах в памяти нет. Исходной для получения данных растровых карт служит информация официальных бумажных карт. Растровые карты получаются сканированием основы и раздельно цветного изображения бумажных карт. За основу растровых ЭК приняты печатные платы для обычных бумажных карт. Снятая с основы карта является копией бумажной. Сканерная технология производства растровых карт обеспечила в начале 90-х годов быстрое производство мировой коллекции этих карт.
В векторных ЭК (Vectorelectronicnavigationalchart -VENC) применяется метод цифрового представления элементов карты с помощью точек, линий, контуров, заданных своими координатами и соответствующим кодом. При таком методе представления информация карты хранится в памяти в виде последовательности записей, характеризующих каждый имеемый на карте картографический объект. Картографическим объектом (КО) называется реальный объект или явление, изображаемое на карте в условном виде; или описание или группа описаний картографических характеристик реального объекта или явления в цифровом виде для отображения его на ЭК.
68. Судовые лаги, их классификации Погрешности лагов и учет их в судовождении.
Судовые лаги служат для измерения скорости судна и пройденного расстояния. Лаги бывают:
1. Относительные.
2. Абсолютные.
Абсолютные - лаги, которые измеряют скорость судна относительно грунта.
К относительным причисляют лаги, которые измеряют скорость судна относительные воды.
Если лагом измеряют только продольную составляющую скорости судна, то его называют однокомпонентным. Если же лаг измеряет и поперечную составляющую скорости, то он называется двухкомпонентным или лагом-дрейфометром. В зависимости от физического закона, положенного в принцип работы лага, различают:
1. Гидродинамические лаги
2. Индукционные лаги.
3. Гидроакустические доплеровские лаги.
4. Гидроакустические корреляционные лаги.
1. Гидродинамические лаги используют зависимость гидродинамического давления от скорости судна, которая имеет следующую зависимость:
В данном типе лагов с помощью трубки Пито выделяется гидродинамическое давление набегающего потока воды, который возникает при движении судна.
По величине этого давления находят скорость судна.
Данный тип является относительным и однокомпонентным.
2. Индукционный лаг - использует закон электромагнитной индукции. В днище судна находится индукционный преобразователь , помещенный в морскую воду. При движении судна в индукционном преобразователе вырабатывается ЭДС, которая зависит от скорости судна. Эта ЭДС подается в схему лага и по ее величине рассчитывается текущее значение скорости судна. Для работы лага надо, чтобы вода, в которой помещен индукционный преобразователь проводил электрический ток, поэтому в пресной воде индукционный лаг работает неудовлетворительно.
3. Принцип работы гидроакустического доплеровского лага основан на эффекте Доплера.
В доплеровском лаге
гидроакустическая антенна А излучает
электро-звуковые импульсы с опорной
частотой f
,
которые направлены в сторону дна.
Отражаясь от дна импульсы опять поступают
на гидродинамическую антенну А, однако
их частота f
из-за
эффекта Доплера > f
.
Разность этих частот (
)
называется доплеровским сдвигом частоты,
который зависит от скорости судна.
Измеряя
,
в лаге рассчитывается скорость судна.
Данный лаг является абсолютным и двухкомпонентным, т.е изменяет как продольную, так и поперечную составляющую скорости судна.
Для повышения точности измерения скорости судна определение каждой составляющей производится с помощью 2-х лучевой системы. Импульсы посылаются как по направлению, так и в противоположную сторону.
4. Гидроакустический корреляционный лаг с помощью носовой и кормовой гидроакустической антенной зондирует дно под судном.
Сигал с первой антенный
(носовой) A
подается на схему задержки времени T,
а затем - на коррелятор K.
Сигнал с кормовой антенны
подается сразу на
коррелятор K.
Коррелятор K
изменяет величину
задержки времени T
так, чтобы сигналы максимально совпадали.
В этом случае время задержки T
равно времени, за которое судно проходит
расстояние, равное дистанции между
антеннами. B
и V
судна определяются по зависимости:
.
Данный лаг является абсолютным и двухкомпонентным. Оба гидроакустических лага измеряют скорость судна относительно грунта на глубинах до 400 м. При больших глубинах они работают в режиме относительного лага. Для относительных лагов существуют 3 погрешности:
1. Постоянная погрешность, не зависящая от скорости судна.
2. Линейно-зависящая от скорости судна.
3. Нелинейно-зависящая от скорости судна.
Для компенсации данных погрешностей в схеме лага вырабатывают соответствующие поправки.
