- •Белки. Уровни структурной организации белковой молекулы. Связь структуры и функций.
- •2.Белки. Физико-химические свойства белков (денатурация, растворимость, электрофоретическая подвижность). Методы исследования структуры белков.
- •Методы разделения (фракционирования) белков
- •3.Белки. Четвертичная структура. Гемоглобин. Миоглобин. Строение. Особенности функционирования. Гемоглобинопатии. Характеристика сложных белков
- •Хромопротеины
- •4.Ферменты – биокатализаторы. Активный центр ферментов. Его формирование у ферментов с различной структурой. Активаторы и ингибиторы.
- •5.Ферменты. Регуляция действия ферментов: аллостерические механизмы, протеолиз. Регуляция активности ферментов
- •Номенклатура ферментов
- •7.Строение ферментов. Формирование активного центра у простых и сложных ферментов. Механизм действия. Роль витаминов в функционировании ферментов.
- •Строение коферментов
- •8.Современные представления о механизме тканевого дыхания. Пиридинзависимые дегидрогеназы. Их коферменты. Строение и роль в биологическом окислении.
- •III. Биологическое окисление.
- •Дыхательная цепь (дц) (или Цепь Переноса Электронов – цпэ, или Электрон-Транспортная Цепь – этц)
- •Функционирование дц
- •Окислительное фосфорилирование
- •Альтернативные варианты биологического окисления
- •9.Флавиновые ферменты. Их простетические группы. Роль в биологическом окислении.
- •10. Терминальные стадии биологического окисления. Цитохромы. Роль цитохромоксидазы в окислительно-восстановительных реакциях.
- •11.Структура и роль атф. Субстратное и окислительное фосфорилирование.
- •Субстратное фосфорилирование
- •Функционирование дц
- •Окислительное фосфорилирование
- •13. Роль тканевого дыхания в обеспечении организма энергией. Взаимосвязь биологического окисления с цтк и бета-окислением.
- •14.Микросомальное окисление. Локализация и значение процесса в обмене веществ. Роль цитохрома р450.
- •Микросомальное окисление
- •16 Анаэробный процесс распада углеводов для мышц.
- •19. Метаболизм гликогена.Мобилизация гликогена (гликогенолиз)
- •20 Глюконеогенез (схема процесса), его регуляция. Цикл Кори.
- •Патогенез
- •Строение и функции липидов. Метаболизм липидов и его регуляция
- •24. Липиды. Классификация. Строение. Биологическая роль. Нейтральные жиры, фосфолипиды, гликолипиды, холестерин, простагландины.
- •25.Переваривание нейтральных жиров в жкт. Всасывание продуктов переваривания. Ресинтез жиров в кишечнике. Транспортные формы липидов в крови. Липопротеины, их характеристика.
- •26. Жиры как источник энергии. Обмен жирных кислот в тканях. Бета-окисление. Последовательность реакций. Связь обмена жирных кислот с цитратным циклом и тканевым дыханием.
- •27. Синтез высших жирных кислот и нейтральных жиров в организме. Особенности. Пути образования жиров из углеводов и аминокислот. Роль пентозофосфатного цикла в обеспечении синтеза жиров.
- •28. Холестерин. Структура и биологическое значение. Биосинтез. Значение определения холестерина в сыворотке крови для диагностики заболеваний.
- •29.Кетоновые тела, синтез, строение. Концентрация кетоновых тел в норме и при патологии(сахарный диабет), при голодании.
- •31.Реакции трансаминирования и синтеза заменимых аминокислот в организме. . Роль витамина в6в этом процессе. Диагностическое значение определения трансаминаз.
- •32.Декарбоксилирование аминокислот. Образование биогенных аминов: гистамина, серотонина, гамк. Роль биогенных аминов.
- •33. Дезаминирование аминокислот и образование аммиака в организме. Пути его обезвреживания. Количественное определение мочевины в сыворотке крови. Диагностическое значение.
- •34. Обмен фенилаланина, тирозина. Использование тирозина для синтеза катехоламинов, тироксина, меланина. Нарушение обмена фенилаланина.
- •35. Обмен серосодержащих аминокислот; серина; триптофана.
- •36. Диаминокарбоновые и моноаминодикарбоновые кислоты (аргинин, лизин, гистидин, аспарагиновая и глутаминовая кислоты). Строение. Превращение, участие в обмене.
- •37. Нуклеопротеины. Нуклеиновые кислоты: днк, рнк. Строение. Функции. Представление об укладке днк в хроматине
- •38. Типы рнк. Особенности структуры. Функции. Биосинтез рнк (транскрипция). Особенности синтеза м-рнк у эукариот и прокариот. Рибосомы. Строение, биологическая роль.
- •39.Генетический код. Биохимические основы хранения наследственных признаков и механизм их передачи. Виды мутаций.
- •40. Биосинтез белка. Трансляция. Этапы биосинтеза на рибосомах. Постсинтетическая модификация белка.
- •Биохимия крови
- •44.Белки крови. Особенности строения и функции иммуноглобулинов.
- •45. Катаболизм гемоглобина. Виды билирубина. Желтухи.
- •Биохимия тканей
- •46. Белки соединительной ткани – коллаген, эластин, протеогликаны. Особенности структуры и функции. Роль витамина с в функционировании соединительной ткани.
- •48. Биохимия нервной ткани. Особенности метаболизма мозга. Образование и роль производных аминокислот: серотонина, гамк, гистамина, других биогенных аминов. Обезвреживание аммиака в нервной ткани.
- •49. Биохимия костной ткани. Роль органических и минеральных компонентов в функционировании костной ткани. Роль витаминов с и d в формировании костной ткани.
- •Гормоны. Структура и биологическая роль
- •50. Гормоны передней доли гипофиза. Соматотропин. Химическая природа, биологическая роль.
- •51. Гормоны задней доли гипофиза: окситоцин, вазопрессин. Химическая природа. Биологическая роль.
- •53. Гормоны мозгового слоя надпочечников: адреналин, норадреналин. Строение. Синтез. Биологическая роль. Механизм действия.
- •55.Гормоны щитовидной железы. Биосинтез. Влияние на метаболизм. Механизм действия. Гипо- и гипертиреозы.
- •56. Гормоны стероидной природы. Классификация. Кортикостероиды: глюкокортикоиды и минералокортикоиды. Строение. Биологическая роль. Механизм действия.
- •57. Гормоны половых желез. Строение. Влияние на обмен веществ. Механизм действия.
- •Андрогены
- •Эстрогены
- •58. Взаимосвязь обмена углеводов, липидов, аминокислот (схема). Гормональная регуляция. Роль инсулина, глюкагона, адреналина.
- •59. Общаяя характеристика витаминов. Классификация. Участие в обмене. Связь с ферментами.
- •Классификация витаминов
- •Участие витаминов в обмене веществ
- •60. ВитаминВ1. Структура. Роль в обменевеществ. Гиповитаминоз
- •Витамин в1
- •Роль витамина в1 в обмене веществ
- •61. Витамин в2. Строение, участие в обмене. Связь с ферментами. Гиповитаминоз Витамин в2
- •62. Витамин рр. Строение, участие в обмене. Взаимосвязь с ферментами. Гиповитаминоз Витамин рр
- •Роль витамина рр в обмене веществ
- •63.Витамин в6. Строение. Участие в обмене. Гиповитаминоз Витамин в6
- •Роль витамина в6 в обмене веществ
- •64.Антианемическиевитамины (в12, в9). Особенностиструктуры, роль в метаболизме, гиповитаминозы. Витамин в9 (фолиевая кислота)
- •Роль фолиевой кислоты в обмене веществ
- •Витамин в12
- •Роль кобаламина в обмене веществ
- •65. Витамин с. Структура, роль в обмене. Участие в Реминеральзации и образовании зуба. Авитаминоз. Витамин с
- •Роль витамина с в обмене веществ
- •66. Жирорастворимыевитамины. Общая характеристика группы. Витамин а.Провитамин. Строение.Биологическая роль. Участие в образованииродопсина. Авитаминоз.
- •Свойства жирорастворимых витаминов
- •Жирорастворимые витамины и их функции
- •Витамин а
- •67. Жирорастворимыевитамины. Витамингруппы д. Провитамины. Строение, роль в обменекальция и фосфора в обменекостнойткани зуба. Симптомынедостаточности
- •68. Жирорастворимыевитамины е и к. Их биологическая функція Витамин е
- •Роль витамина е в обмене веществ
- •Витамин к
- •Роль витамина к в обмене веществ
- •69. Роль витаминов а,с,д в процессе минерализации зуба
- •Биохимия печени
- •70.Функции печени. Роль печени в обезвреживании токсических веществ. Роль цитохрома р450.
- •71.Функции печени. Участие в обмене углеводов. Цикл Кори. Аланиновый цикл.
- •72.Роль печени в обмене липидов. Транспортные формы липидов.
- •73.Роль печени в обмене белков и аминокислот. Обезвреживание аммиака в орнитиновом цикле.
- •Биохимия почек
- •74.Роль водно-солевого обмена в функционировании организма. Регуляция водно-солевого обмена (ренин-ангиотензиновая система, роль альдостерона и вазопрессина).
- •75.Особенности биохимического состава дентина. Изменение при патологии
- •76.Особенности биохимического состава и биохимическая роль пульпы.
- •77.Биохимия ротовой жидкости. Белки слюны. Их характеристика. Роль кальций-связывающего белка.
- •78.Биохимия ротовой жидкости. Ферменты слюны: амилаза, лизоцим, пероксидаза. Их биологическая роль. Определение активности амилазы слюны.
- •79.Особенности биохимического состава слюны. Факторы, влияющие на состав слюны. РН слюны. Патология, вызываемая изменением рН.
- •80.Биохимический состав зуба. Характеристика биохимических компонентов: белков, липидов, углеводов.
- •84.Фторапатиты, флюороз, профилактика, лечение.
- •85.Биохимические изменения в тканях зуба при патологии.
33. Дезаминирование аминокислот и образование аммиака в организме. Пути его обезвреживания. Количественное определение мочевины в сыворотке крови. Диагностическое значение.
Дезаминирование ( отщепление аминогруппы) – существует четыре типа реакций, катализируемых своими ферментами:
Восстановительное дезаминорование ( +2H+)
Гидролитическое дезаминированиие (+H2О)
Внутримолекулярное дезаминирование
Окислительное дезаминирование (+1/2 О2)
Во всех случаях NH2- группа аминокислоты высвобождается в виде аммиака. Помимо аммиака продуктами дезаминирования являются жирные кислоты, окикислоты и кетокислоты.
Кроме перечисленных четырех типов реакций и катализирующих их ферментов в животных тканях и печени человека открыты также три специфических фермента (серин- и треониндегидратазы и цистатионин-γ- лиаза), катализирующих неокислительное дезаминирование серина, треонина и цистеина. Они требуют присутствия пиридоксаль-фосфата в качестве кофермента. Конечными продуктами реакции являются пируват и α- кетобутират, аммиак и сероводород.
Клинико-диагностическое значение определения мочевины в крови и моче. В крови здорового человека содержание мочевины составляет 3,33 – 8,32 ммоль/л. За сутки с мочой выводится 20 – 35 г мочевины.
Изменения содержания мочевины в крови при заболеваниях зависят от соотношения процессов её образования в печени и выведения почками. Повышение содержания мочевины в крови (гиперазотемия) отмечается при почечной недостаточности, снижение – при недостаточности печени, при диете с низким содержанием белков.
Повышение экскреции мочевины с мочой наблюдается при употреблении пищи с высоким содержанием белков, при заболеваниях, сопровождающихся усилением катаболизма белков в тканях, при приёме некоторых лекарств (например, салицилатов). Снижение экскреции мочевины с мочой характерно для заболеваний и токсических поражений печени, заболеваний почек, сопровождающихся нарушением их фильтрационной способности.
Аммиак, образующийся в тканях, сначала превращается в нетоксичное соединение и в таком виде переносится кровью к печени или почкам. Такими транспортными формами являются аминокислоты глутамин, аспарагин и аланин.
34. Обмен фенилаланина, тирозина. Использование тирозина для синтеза катехоламинов, тироксина, меланина. Нарушение обмена фенилаланина.
Фенилаланин - незаменимая аминокислота, так как в клетках животных не синтезируется её бензольное кольцо. Тирозин - условно заменимая аминокислота, поскольку образуется из фенилаланина. Содержание этих аминокислот в пищевых белках (в том числе и растительных) достаточно велико. Фенилаланин и тирозин используются для синтеза многих биологически активных соединений. В разных тканях метаболизм этих аминокислот происходит поразному.
Метаболизм феиилаланина
Основное количество фенилаланина расходуется по 2 путям: включается в белки; превращается в тирозин.
Превращение фенилаланина в тирозин прежде всего необходимо для удаления избытка фенилаланина, так как высокие концентрации его токсичны для клеток. Образование тирозина не имеет большого значения, так как недостатка этой аминокислоты в клетках практически не бывает.
Основной путь метаболизма фенилаланина начинается с его гидроксилирования (рис. 9-29), в результате чего образуется тирозин. Эта реакция катализируется специфической монооксиге-назой - фенилаланингидр(жсилазой, кофермен-том которой служит тетрагидробиоптерин (Н4БП). Активность фермента зависит также от наличия Fe2+. Реакция необратима. Н4БП в результате реакции окисляется в дигидробиоптерин (Н2БП). Регенерация последнего происходит при участии дигидроптеридинредуктазы с использованием NADPH + H+.
Особенности обмена тирозина в разных тканях:
Обмен тирозина значительно сложнее, чем обмен фенилаланина. Кроме использования в синтезе белков, тирозин в разных тканях выступает предшественником таких соединений, как катехоламины, тироксин, меланины, и ка-таболизируется до СО2 и Н2О.
Катаболизм тирозина в печени
В печени происходит катаболизм тирозина до конечных продуктов. Специфический путь катаболизма включает несколько ферментативных реакций, завершающихся образованием фумарата и ацетоацетата:
Трансаминирование тирозина с ос-кетоглутаратом катализирует тирозинаминотрансфе-раза(кофермент ПФ) - индуцируемый фермент печени млекопитающих. В результате образуется п-гидроксифенилпируват.
В реакции окисления п-гидроксифенилпирувата в гомогентизиновую кислоту происходит декарбоксилирование, гидроксилирование ароматического кольца и миграция боковой цепи. Реакцию катализирует фермент п-гидроксифенилпируватдиоксигеназа, кофакторами которого выступают витамин С и Fe2+.
Превращение гомогентизиновой кислоты в фумарилацетоацетат сопровождается расщеплением ароматического кольца. Эта реакция катализируется диоксигеназой гомогентизиновой кислоты, в качестве кофермента содержащей Fe2+.
Обмен фенилаланина и тирозина связан со значительным количеством реакций гидроксилирования, которые катализируют оксигеназы. Ферменты оксигеназы (гидроксилазы) используют молекулу О2 и кофермент-донор водорода (чаще - Н4БП). Для катализа оксигеназам необходимы кофакторы - Fe2+ или гем (для некоторых - Сu+), а для многих ещё и витамин С.
В печени здоровых людей небольшая часть фенилаланина (∼10%) превращается в фенил-лактат и фенилацетилглутамин.
Этот путь катаболизма фенилаланина становится главным при нарушении основного пути - превращения в тирозин, катализируемого фенил-аланингидроксилазой. Такое нарушение сопровождается гиперфенилаланинемией и повышением в крови и моче содержания метаболитов альтернативного пути: фенилпирувата, фенилацетата, фениллактата и фенилацетилглу-тамина. Дефект фенилаланингидроксилазы приводит к заболеванию фенилкетонурия (ФКУ). Выделяют 2 формы ФКУ:
Классическая ФКУ - наследственное заболевание, связанное с мутациями в гене фенилаланингидроксилазы, которые приводят к снижению активности фермента или полной его инактивации. При этом концентрация фенилаланина повышается в крови в 20-30 раз (в норме - 1,0-2,0 мг/дл), в моче - в 100-300 раз по сравнению с нормой (30 мг/дл). Концентрация фенилпирувата и фениллактата в моче достигает 300-600 мг/дл при полном отсутствии в норме.
Наиболее тяжёлые проявления ФКУ - нарушение умственного и физического развития, судорожный синдром, нарушение пигментации. При отсутствии лечения больные не доживают до 30 лет. Частота заболевания - 1:10 000 новорождённых. Заболевание наследуется по аутосомно-рецессивному типу.
Тяжёлые проявления ФКУ связаны с токсическим действием на клетки мозга высоких концентраций фенилаланина, фенилпирувата, фениллактата. Большие концентрации фенилаланина ограничивают транспорт тирозина и триптофана через гематоэнцефаличеекий барьер и тормозят синтез нейро-медиаторов (дофамина, норадреналина, серотонина).
Алкаптонурия ("чёрная моча")
Причина заболевания - дефект диоксигеназы гомогентизиновой кислоты. Для этой болезни характерно выделение с мочой большого количества гомогентизиновой кислоты, которая, окисляясь кислородом воздуха, образует тёмные пигменты алкаптоны. Это метаболическое нарушение было описано ещё в XVI веке, а само заболевание охарактеризовано в 1859 г. Клиническими проявлениями болезни, кроме потемнения мочи на воздухе, являются пигментация соединительной ткани (охроноз) и артрит. Частота - 2-5 случаев на 1 млн новорождённых. Заболевание наследуется по аутосомнорецессивному типу. Диагностических методов выявления гетерозиготных носителей дефектного гена к настоящему времени не найдено.
Альбинизм
Причина метаболического нарушения - врождённый дефект тирозиназы. Этот фермент катализирует превращение тирозина в ДОФА в меланоцитах. В результате дефекта тирозиназы нарушается синтез пигментов меланинов.
Клиническое проявление альбинизма (от лат. albus - белый) - отсутствие пигментации кожи и волос. У больных часто снижена острота зрения, возникает светобоязнь. Длительное пребывание таких больных под открытым солнцем приводит к раку кожи. Частота заболевания 1:20 000.
