Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
shpory_bkh Все вопросы.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
490.93 Кб
Скачать

20 Глюконеогенез (схема процесса), его регуляция. Цикл Кори.

Глюконеогенез – синтез глюкозы из неуглеводных продуктов. Такими продуктами или метаболитами являются в первую очередь молочная и пи-ровиноградная кислоты, так называемые гликогенные аминокислоты, гли-церол и ряд других соединений. Иными словами, предшественниками глюкозы в глюконеогенезе может быть пируват или любое соединение, превращающееся в процессе катаболизма в пируват или один из промежуточных продуктов цикла трикарбоновых кислот. Большинство стадий глюконеогенеза представляет собой обращение реакции гликолиза. Только 3 реакции гликолиза (гексокиназная, фосфо-фруктокиназная и пируваткиназная) необратимы, поэтому в процесс глю-конеогенеза на 3 этапах используются другие фермент

Глюконеогенез осуществляется в направлении, обратном гликолизу. Большинство стадий этих двух процессов совпадают и катализируются одинаковыми ферментами. Исключение — необратимые р-ции II-IV (см. схему в ст. Гликолиз), к-рые в глюконеогенезе протекают обходными путями. Так, синтез фосфоенол-пировиноградной к-ты из пировиноградной (р-ция IV) осуществляется след. образом: где АТФ-аденозинтрифосфат, АДФ-аденозиндифосфат, НАДН и НАД-соотв. восстановленная и окисленная формы кофермента никотинамидадениндинуклеотида, ГТФ - гуанозинтрифосфат, ГДФ-гуанозиндифосфат. Первая и вторая стадии этого процесса протекают в митохондриях. Образовавшаяся яблочная к-та способна проникать через мембрану митохондрий в цитоплазму и участвовать в дальнейших превращениях. У растений и бактерий обнаружены ферменты, осуществляющие синтез фосфоенолпиро-виноградной к-ты без промежут. стадий, а у нек-рых животных он протекает полностью в митохондриях, откуда эта к-та поступает в цитоплазму для участия в дальнейших р-циях глюконеогенеза. В цитоплазме может осуществляться также восстановительное карбоксилирование пировиноградной к-ты с образованием яблочной. Фруктозо-6-фосфат образуется в результате необратимого гидролиза фруктозо-1,6-дифосфата. Глюкозо-6-фосфат дефосфорилируется с образованием глюкозы или превращ. в глюкозо-1-фосфат-ключевое промежут. соед. в синтезе углеводов. Синтез одной молекулы глюкозы м. б. выражен суммарным ур-нием: 2СН3С(O)СООН + 2НАДН + 4АТФ + 2ГТФ -> -> С6Н12О6 + 2НАД + 4АДФ + 2ГДФ + 6Н3РО4 Кроме пировиноградной или молочной к-ты предшественниками глюкозы м. б. глицерин, а такжеаминокислоты, к-рые в результате превращений, происходящих в цикле трикарбоновых к-т и глиоксилатном цикле, образуют пировиноградную и фосфоенолпировиноградную к-ты. Растения и микроорганизмы могут синтезировать углеводы также из жирных к-т через ацетилкофермент А. Осн. пункты контроля глюконеогенеза-регуляция синтезов фосфоенол-пировиноградной к-ты и глюкозо-6-фосфата. Первая р-ция катализируется пируваткарбоксилазой (активируется ацетилированным коферментом А), вторая - фруктозо-бис-фосфатазой (ингибируется аденозинмонофосфатом и активируется АТФ). Регуляция глюконеогенеза в организме человека и животных осуществляется также гормонами, напр. инсулин тормозит синтез ферментов глюконеогенеза, катехоламины, глюкагон и адренокортикотропин стимулируют глюконеогенез в печени, а паратиреоидный гормон-в почках. Осн. пункты контроля глюконеогенеза-регуляция синтезов фосфоенол-пировиноградной к-ты и глюкозо-6-фосфата. Первая р-ция катализируется пируваткарбоксилазой (активируется ацетилированным коферментом А), вторая - фруктозо-бис-фосфатазой (ингибируется аденозинмонофосфатом и активируется АТФ). Регуляция глюконеогенеза в организме человека и животных осуществляется также гормонами, напр. инсулин тормозит синтез ферментов глюконеогенеза, катехоламины, глюкагон и адренокортикотропин стимулируют глюконеогенез в печени, а паратиреоидный гормон-в почках. цикл кори Начинается с образования лактата в мышцах в результате анаэробного гликолиза (особенно в белых мышечных волокнах, которые бедны митохондриями по сравнению с красными). Лактат переносится кровью в печень, где в процессе глюконеогенеза превращается в глюкозу, которая затем с током крови может возвращаться в работающую мышцу.

Итак печень снабжает мышцу глюкозой и, следовательно, энергией для сокращений. В печени часть лактата может окисляться до СО2 и Н2О, превращаясь в пируват и далее в общих путях катаболизма.

22 Пентозофосфатный путь, называемый также гексомонофосфатным шунтом, служит альтернативным путём окисления глюкозо-6-фосфата. Пентозофосфатный путь состоит из 2 фаз (частей) - окислительной и неокислительной. Пентозофосфатный путь представляет собой прямое окисление глюкозы и протекает в цитоплазме клеток. Наибольшая активность ферментов пентозофосфатного пути обнаружена в клетках печени, жировой ткани, коры надпочечников, молочной железы в период лактации, зрелых эритроцитах. Низкий уровень этого процесса выявлен в скелетных и сердечной мышцах, мозге, щитовидной железе, легких. Пентозофосфатный путь выполняет в организме две важнейшие метаболические функции:

 он является главным источником НАДФН для синтеза жирных кислот, холестерола, стероидных гормонов, микросомального окисления; в эритроцитах НАДФН используется для восстановления глутатиона – вещества, препятствующего пероксидному гемолизу;

 он является главным источником пентоз для синтеза нуклеотидов, нуклеиновых кислот, коферментов (АТФ, НАД, НАДФ, КоА-SН и др.).

В пентозофосфатном пути можно выделить две фазы - окислительную и неокислительную.

Исходным субстратом окислительной фазы является глюкозо-6-фосфат, который непосредственно подвергается дегидрированию с участием НАДФ-зависимой дегидрогеназы. Продукт реакции гидролизуется, а образующийся 6-фосфоглюконат дегидрируется и декарбоксилируется . Таким образом, происходит укорочение углеродной цепи моносахарида на один углеродный атом («апотомия»), и образуется рибулозо-5-фосфат. Неокислительная фаза пентозофосфатного пути начинается с реакций изомеризации. В ходе этих реакций одна часть рибулозо-5-фосфата изомеризуется в рибозо-5-фосфат, другая - в ксилулозо-5-фосфат . Следуюшая реакция протекает при участии фермента транскетолазы, коферментом которой является тиаминдифосфат (производное витамина B1). В этой реакции происходит перенос двухуглеродного фрагмента с ксилулозо-5-фосфата на рибозо-5-фосфат: Образовавшиеся продукты взаимодействуют между собой в реакции, которая катализируется трансальдолазой и заключается а переносе остатка дигидроксиацетона на глицеральдегид-3-фосфат. Таким образом, три молекулы пентозофосфатов в результате реакций неокислительной стадии превращаются в две молекулы фруктозо-6-фосфата и одну молекулу глицеральдегид-3-фосфата. Фруктозо-6-фосфат может изомеризоваться в глюкозо-6-фосфат, а глицеральдегид-3-фосфат может подвергаться окислению в гликолизе или изомеризоваться в дигидроксиацетонфосфат. Последний вместе с другой молекулой глицеральдегид-3-фосфата может образовывать фруктозо-1,6-дифосфат, который также способен переходить в глюкозо-6-фосфатПосредством пентозофосфатного пути может происходить полное окисление глюкозо-6-фосфата до шести молекул СО2. Все эти молекулы образуются из С-1-атомов шести молекул глюкозо-6-фосфата, а из образовавшихся при этом шести молекул рибулозо-5-фосфата снова регенерируются пять молекул глюкозо-6-фосфата.

23 Патология углеводного обмена

Нарушения углеводного обмена могут быть на различных этапах обмена веществ. Основными показателями нарушения является изменение концентрации глюкозы в крови (гипер-, гипоглюкоземия) и появление глюкозы в моче (глюкозурия). Концентрация глюкозы в крови взрослого здорового человека в норме составляет 3,3-5,5 ммоль/л. Появление глюкозы в моче возможно в случае превышения величины почечного порога, который для глюкозы составляет 10 ммоль/л.

Основными причинами развития нарушения углеводного обмена являются:

1. алиментарные. Употребление пищи, богатой углеводами, ведет к быстрому переполнению гликогенного резерва печени, мышц, развитию гиперглюкоземии, глюкозурии. При снижении двигательной активности происходит снижение окислительных процессов и усиление биосинтеза жиров в тканях, что ведет к развитию алиментарного ожирения;

2. при поражении слизистых оболочек ЖКТ. При этом в желудке нарушается образование HCl (гипохлоргидрия или ахлоргидрия), поступающие углеводы сбраживаются под влиянием ферментов микрофлоры с образованием лактата, а белки подвергаются гниению. Это создает благоприятные условия для развития микрофлоры и приводит к расстройству пищеварения в целом. При поражении слизистой тонкого кишечника нарушается гидролиз дисахаридов или всасывание продуктов гидролиза;

3. при поражении печени нарушается биосинтез и распад гликогена, глюконеогенез;

4. при поражении поджелудочной железы нарушается секреция ферментов (-амилаз, олиго-1,6-гликозидаз), участвующих в гидролизе крахмала и гликогена.

Наиболее грозным заболеванием ПЖЖ является сахарный диабет. При этом поражаются В-клетки, они перестают вырабатывать гормон инсулин. Инсулин – единственный гормон, обеспечивающий транспорт глюкозы в клетки органов и тканей. В случае недостаточной его выработки или отсутствия вообще происходит нарушение биоэнергетики клеток, органов и тканей. В этом случае интенсивному окислению подвергаются белки и липиды, что сопровождается избыточной продукцией аммиака и Ац-КоА.

Для связывания токсичного аммиака отвлекаются кетокислоты (ЩУК и -кетоглутаровая) из ЦТК, их концентрация резко падает, что приводит к снижению интенсивности окислительных процессов. ЦТК не в состоянии окислить все молекулы ацетил-КоА, образование которых увеличивается с усилением окисления белков и липидов. Создаются условия для их конденсации с образованием кетоновых тел. При сахарном диабете в крови наблюдается гиперкетонемия (норма - до 0,1 г/л) и кетонурия.

2СН3-СОSKoA (это ацетил-КоА) (Ац-КоА-трансфераза) ацетоацетил-КоА  (деацилаза, +Н2О, -HS-KoA) ацетоуксусная кислота.

Ацетоуксусная кислота может превращаться в -гидроксимасляную кислоту, при этом НАДН2НАД. Также она может превращаться в ацетон с отщеплением СО2.

В норме содержание кетоновых тел в крови здорового человека до 0,1 г/л. При поражении печени нарушается процесс биосинтеза и распада гликогена, процессы глюконеогенеза.Наследственные заболевания, как правило, связаны с нарушением синтеза ферментов, участвующих в метаболизме углеводов. Например, алактазия - неусвояемость углеводов молока (лактозы). Это связано с отсутствием фермента – лактазы, поэтому поступающие с молоком дисахариды не усваиваются. У детей проявляется в виде рвоты, тошноты, поноса, вздутия живота, происходит обезвоживание организма. Лечение: исключение лактозы из пищи и замещение на мальтозу, сахарозу, глюкозу.Другая группа заболеваний может быть связана с наследственными нарушениями обмена гликогена:

1. гликогенозы, связанные с недостаточным количеством ферментов, участвующих в распаде гликогена (болезнь Гирке, Кори);

2. агликогенозы – заболевания, связанные с нарушением синтеза гликогена (болезнь Льюиса. Андерсона и т.д.).

Под лактазной недостаточностью понимают сниженную активность кишечной лактазы - фермента пристеночного пищеварения, расщепляющего дисахарид лактозу до моносахаров - глюкозы и галактозы. Фермент синтезируют зрелые энтероциты, расположенные на вершине кишечных ворсинок.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]