- •Элементы комбинаторики
- •Пространство элементарных событий. Случайные события.
- •Вероятность
- •Классическая вероятностная схема
- •Закон сложения вероятностей
- •Теорема умножения вероятностей
- •Повторение испытаний (Схема Бернулли)
- •Локальная теорема Муавра-Лапласа
- •Интегральная теорема Муавра-Лапласа
- •Теорема Пуассона (Закон редких событий)
- •Случайные величины
- •Непрерывная случайная величина и плотность распределения
- •Основные свойства плотности распределения
- •Числовые характеристики одномерной случайной величины
- •Свойства математического ожидания
- •Моменты случайной величины
- •Свойства дисперсии
- •Асимметрии и эксцесс
- •Многомерные случайные величины
- •Свойства двумерной функции распределения
- •Плотность вероятности двумерной случайной величины
- •Условная плотность распределения
- •Числовые характеристики системы случайных величин
- •Свойства коэффициента корреляции
- •Нормальный (гауссов) закон распределения
- •Вероятность попадания на интервал
- •Свойства нормальной функции распределения
- •Распределение ("хи–квадрат")
- •Показательный (экспоненциальный) закон распределения
- •Числовые характеристики показательного распределения
- •Функция надежности
Элементы комбинаторики
Правило произведения. Если компоненту х1 строки (х1, х2,....,хк) можно выбрать n1 способами и после каждого такого выбора х1 компоненту х2 можно выбрать n2 – способами. После выбора х1 и х2 компоненту х3 можно выбрать n3 способами и т.д., наконец хк независимо от выбора всех предыдущих компонент можно выбрать nk способами. Тогда количество возможностей (комбинаций) образования строки (х1, х2,....,хк) равно:
. (1)
ПРИМЕР 1: Обед в университетской столовой состоит из трех блюд. Первое блюдо в меню может быть выбрано 5 способами, второе блюдо - 4, а третье блюдо - 3. Сколько дней студент может съедать новый обед, если любая комбинация блюд возможна, и один обед от другого должен отличаться хотя бы одним блюдом?
Правило суммы. Если множество Е1 содержит n1 элемент, множество Е2 - n2 элементов, ..., и множество Ек - nk элементов. И если эти множества попарно не пересекаются, то число элементов в их объединении равно сумме чисел элементов, содержащихся в каждом из этих множеств:
. (2)
Перестановки. Пусть Е(n)={x1, x2,....,xn} – произвольное (неупорядоченное) n – элементное множество. Рассмотрим различные комбинации его упорядочивания. Получаемые при этом упорядоченные множества отличаются друг от друга только порядком следования входящих в них элементов, и называются перестановками из n – элементов. Число всех таких перестановок обозначается символом Pn и находится по формуле:
. (3)
ПРИМЕР 2: Пятеро гостей случайным образом рассаживаются за столом. Сколькими способами можно их рассадить так, чтобы хотя бы 2 гостя поменялись местами (изменился порядок)?
Размещения. Различные
упорядоченные m
– элементные подмножества данного
неупорядоченного множества E(n)
(m
< n)
называются размещениями из n
элементов по m.
Число таких размещений обозначается
и
вычисляется по формуле:
. (4)
ПРИМЕР 3: Десять участников финала разыгрывают одну золотую, одну серебряную и одну бронзовую медали. Сколькими способами эти награды могут быть распределены между спортсменами?
.
Сочетания.
Различные неупорядоченные m
– элементные подмножества множества
E(n)
(m
< n)
называются сочетаниями из n
элементов по m.
Число всех таких сочетаний обозначается
символом
и определяется по формуле:
. (5)
ПРИМЕР 4: В полуфинальном забеге участвуют десять спортсменов. Три спортсмена, показавших лучший результат, попадают в финал. Сколько существует различных троек финалистов?
Примечания:
Размещения из n – элементов по m представляют собой такие m – элементные выборки из множества Е(n), которые отличаются друг от друга либо самими элементами (хотя бы одним), либо порядком их расположения.
Сочетания же из n – элементов по m представляет собой m – элементные выборки, отличающиеся только самими элементами.
Размещения с
повторениями.
Любая строка длиной m,
составленная из элементов множества
Е(n),
называется размещением с повторением
из n
– элементов по m.
Число всех размещений с повторениями
обозначается символом
и вычисляется по формуле:
. (6)
ПРИМЕР 5: Для автомобильных номеров используются 10 цифр и 28 букв. Каждый номер состоит из 3 букв и 4 цифр. Какое максимальное число машин может получить номера при такой системе нумерации?
РЕШЕНИЕ: Сначала осуществим выбор 4 цифр. Каждый такой комплект цифр представляет собой четырехэлементную выборку из 10 – элементного массива цифр, т.е. является размещением с повторениями из 10 элементов по 4. Следовательно, общее число таких элементов равно 104. Исключим из выборки 00-00. Аналогично выбор трех букв из 28 осуществляется 283 числом способов. Т.к. номер каждой машины есть упорядоченная "пара", состоящая из комплекта цифр и комплекта букв, то по правилу произведения число всех номеров будет равно N = (104-1)*283 = 219 498 048.
