Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
10000.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
1.46 Mб
Скачать

1. Клетка – элементарная -структурная единица всего живого. Структура и функции внутриклеточных органелл.

Клетка — элементарная структурная и функциональная единица растительных и животных организмов, способная к самовоспроизведению и развитию. Некоторые микроорганизмы, например, бактерии, многие водоросли, грибы и простейшие, могут состоять из одной клетки. Многоклеточные организмы, к которым относятся все высшие растения, животные и человек, построены из большого количества различных клеток, объединенных в ткани и органы.

Термин «клетка» впервые введен англ. ученым Р. Гуком в 1665 г., который, рассматривая под микроскопом тонкие срезы мертвой пробковой ткани растений, заметил, что она составлена из мелких ячеек или клеток, наподобие пчелиных сот, отделенных друг от друга перегородками. Эти элементарные ячейки Гук и назвал клетками. Но Гук наблюдал не живые клетки, а остатки оболочек когда-то жизнедеятельных клеток.

Строение клетки.

К. являются микроскопическими образованиями, размер которых в среднем составляет 10—50 мкм. Имеются и значительно более мелкие, и более крупные клетки — до нескольких сантиметров (яйцеклетки птиц). Однако чаще всего К. нельзя увидеть невооруженным глазом. Для этого необходим микроскоп с увеличением в десятки и сотни раз. Тонкие же детали строения К. можно рассмотреть только с помощью электронного микроскопа при увеличении в десятки и сотни тысяч раз.

Функции клеток: обеспечивает обмен веществ, размножение, раздражимость, наследственность, изменчивость

Типы клеток: эукариоты и прокариоты

Прокариоты- имеют размер не более 0,5-3 мкм, нет обособленного ядра, т.к. ядро представлено в виде ДНК, отсутствует клеточный центр, отсутствует развитая система мембран, генетический аппарат образован единственной кольцевой хромосомой, не делятся митозом(простейшие бактерии и сине-зеленые водоросли)

Эукариоты- ядерные, все живые организмы, ДНК линейная, цитоплазма имеет цитоскелет и включает различные органоиды, выполняющие энергетические, пищеварительные, выделительные функции. Митохондрии и хлоропласты имеют собственные ДНК, делятся путем митоза.

Клеточная теория

1.Клетка является структурной единицей всего живого. Все живые организмы состоят из клеток.

2.Клетка является функциональной единицей всего живого. Клетка проявляет весь комплекс жизненных функций.

3.Клетка является единицей развития всего живого. Новые клетки образуются только в результате деления исходной материнской клетки.

4. Клетка является генетической единицей всего живого. В хромосомах клетки содержится информация о развитии всего организма.

5.Клетки всех организмов сходны по химическому составу, строению и функциям

Органеллы - это постоянные структуры цитоплазмы, выполняющие в клетке жизненно важные функции.

2. Свойства и функции белков.

Размер белка может измеряться в числе аминокислотных остатков или в дальтонах(молекулярная масса), но из-за относительно большой величины молекулы масса белка выражается в производных единицах — килодальтонах (кДа). Белки дрожжей, в среднем, состоят из 466 аминокислотных остатков и имеют молекулярную массу 53 кДа. Самый большой из известных в настоящее время белков — титин — является компонентом саркомеров мускулов; молекулярная масса его различных вариантов (изоформ) варьирует в интервале от 3000 до 3700 кДа. Титин камбаловидной мышцы(лат. soleus) человека состоит из 38 138 аминокислот[13].

В зависимости от условий, белки способны проявлять как кислотные, так и осно́вныесвойства (так называемая амфотерность). При этом группами, способными кионизации в растворе, являются карбоксильные остатки боковых цепей кислых аминокислот (аспарагиновая и глутаминовая кислоты) и азотсодержащие группы боковых цепей основных аминокислот (в первую очередь, ε-аминогруппа лизина иамидиновый остаток CNH(NH2) аргинина, в несколько меньшей степени — имидазольный остаток гистидина). Отдельные белки характеризуются изоэлектрической точкой (pI) — кислотностью среды pH, при которой молекулы данного белка не несут электрического заряда и, соответственно, не перемещаются в электрическом поле (например, при электрофорезе). Величина pI определяется отношением кислотных и основных аминокислотных остатков в белке: увеличение количества остатков основных аминокислот в данном белке ведёт к увеличению pI; увеличение количества остатков кислых аминокислот приводит к снижению значения pI.

Значение изоэлектрической точки является характерной константой белков. Белки с pI меньше 7 называются кислотными, а белки с pI больше 7 — основными. В целом, pI белка зависит от выполняемой им функции: изоэлектрическая точка большинства белков тканей позвоночных лежит в пределах от 5,5 до 7,0, однако в некоторых случаях значения лежат в экстремальных областях: так, например, для пепсина — протеолитического фермента сильнокислого желудочного сока pI ~ 1[14], а для сальмина — белка-протамина молок лосося, особенностью которого является высокое содержание аргинина, pI ~ 12. Белки, связывающиеся с нуклеиновыми кислотами за счёт электростатического взаимодействия с фосфатными остатками нуклеиновых кислот, часто являются основными белками. Примером таких белков служат гистоны ипротамины.

Белки различаются по степени растворимости в воде. Водорастворимые белки называются альбуминами, к ним относятся белки крови и молока. К нерастворимым или склеропротеинам относятся, например, кератин (белок, из которого состоят волосы, шерсть млекопитающих, перья птиц и т. п.) и фиброин, который входит в состав шёлка ипаутины[15].

Белки также делятся на гидрофильные и гидрофобные (водооталкивающие). К гидрофильным относятся большинство белков цитоплазмы, ядра и межклеточного вещества, в том числе нерастворимые кератин и фиброин. К гидрофобным относятся большинство белков, входящих в состав биологических мембран интегральных мембранных белков, которые взаимодействуют с гидрофобными липидами мембраны[16] (у этих белков обычно есть и небольшие гидрофильные участки).

Денатурация

Как правило, белки сохраняют структуру и, следовательно, физико-химические свойства, например, растворимость в физико-химических условиях, таких как температура и pH, к которым приспособлен данный организм[7]. Изменение этих условий, например, сильное нагревание или обработка белка кислотой или щёлочью, приводит к потере четвертичной, третичной и вторичной структур белка. Потеря белком или другим биополимером естественной структуры называется денатурацией. Денатурация белка может быть полной или частичной, обратимой или необратимой. Самый известный случай необратимой денатурации белка в быту — это приготовление куриного яйца, когда под воздействием высокой температуры растворимый в воде прозрачный белок овальбумин становится плотным, нерастворимым и непрозрачным. Денатурация в некоторых случаях обратима, как в случае осаждения водорастворимых белков с помощью солей аммония, и используется как способ их очистки[17

функции белков

1. Белки участвуют в образовании клеточных и внеклеточных структур: входят в состав клеточных мембран, шерсти, волос, сухожилий, стенок сосудов и т.д.

2Некоторые белки способны присоединять различные вещества и переносить их к различным тканям и органам тела, из одного места клетки в другое. Например, белок крови гемоглобин присоединяет кислород и транспортирует его от легких ко всем тканям и органам, а от них в легкие переносит углекислый газ; в состав клеточных мембран входят особые белки, обеспечивающие активный и строго избирательный перенос некоторых веществ и ионов из клетки во внешнюю среду и обратно.

Большая группа белков принимает участие в регуляции процессов обмена веществ. Такими белками являются гормоны – биологически активные вещества, выделяющиеся в кровь железами внутренней секреции.

4.В ответ на проникновение в организм чужеродных белков или микроорганизмов (антигенов) образуются особые белки – антитела, способные связывать и обезвреживать их. Фибрин, образующийся из фибриногена, способствует остановке кровотечений.

5. Особые сократительные белки участвуют во всех видах движения клетки и организма: образовании псевдоподий, мерцании ресничек и биении жгутиков у простейших, сокращении мышц у многоклеточных животных, движении листьев у растений и др.

6 Благодаря белкам в организме могут откладываться про запас некоторые вещества. Например, при распаде гемоглобина железо не выводится из организма, а сохраняется в нем, образуя комплекс с белком ферритином.

7Белки являются одним из источников энергии в клетке. При распаде 1 г. белка до конечных продуктов выделяется 17,6 кДж.

8.Одна из важнейших функций белков, так как все биохимические реакции протекают с огромной скоростью, благодаря участию в них биокатализаторов – ферментов – веществ белковой природы.

9.В яде змей, насекомых и грибов содержатся токсические белки.

10.В мембрану клетки встроены молекулы белков, способных изменять свою третичную структуру в ответ на действие факторов внешней среды. Так происходит прием сигналов из внешней среды и передача команд в клетку. . Особенности пространственной организации белков. Фибриллярные глобулярные белки.

Молекулы белков представляют собой линейные полимеры, состоящие из α-L-аминокислот(которые являются мономерами) и, в некоторых случаях, из модифицированных аминокислот . Для обозначения аминокислот в научной литературе используются одно- или трёхбуквенные сокращения. Хотя на первый взгляд может показаться, что использование в большинстве белков «всего» 20 видов аминокислот ограничивает разнообразие белковых структур на самом деле количество вариантов трудно переоценить: для цепочки из 5 аминокислот оно составляет уже более 3 миллионов, а цепочка из 100 аминокислот (небольшой белок) может быть представлена более чем в 10130 вариантах. Белки длиной от 2 до нескольких десятков аминокислотных остатков часто называютпептидами, при большей степени полимеризации — белками, хотя это деление весьма условно.

При образовании белка в результате взаимодействия α-аминогруппы (-NH2) одной аминокислоты с α-карбоксильной группой (-COOH) другой аминокислоты образуются пептидные связи. Концы белка называют N- и C-концом, в зависимости от того, какая из групп концевой аминокислоты свободна: -NH2 или -COOH, соответственно. При синтезе белка на рибосоме первая, N-концевая аминокислота обычно метионин, а новые аминокислоты присоединяются к C-концу предыдущей аминокислоты.

Последовательность аминокислот в белке соответствует информации, содержащейся в гене данного белка. Эта информация представлена в виде последовательности нуклеотидов, причём одной аминокислоте соответствует в ДНК последовательность из трёх нуклеотидов — так называемый триплет или кодон.

Такой трёхкодонный код сложился эволюционно рано. Но существование различий в некоторых организмах, появившихся на разных эволюционных стадиях, указывает на то, что он был не всегда таким.

Согласно некоторым моделям, сначала код существовал в примитивном виде, когда малое число кодонов обозначало сравнительно небольшое число аминокислот. Более точное значение кодонов и большее число аминокислот могли быть введены позже. Сначала только первые два из трёх оснований могли быть использованы для узнавания [что зависит от структуры тРНК].

Гомологичные белки (предположительно, имеющие общее эволюционное происхождение и нередко выполняющие одну и ту же функцию), например, гемоглобины разных организмов, имеют во многих местах цепи идентичные, консервативные остатки аминокислот. В других местах находятся различные аминокислотные остатки, называемые вариабельными. По степени гомологии (сходства аминокислотной последовательности) возможна оценка эволюционного расстояния между таксонами, к которым принадлежат сравниваемые организмы.

Глобулярные белки

В отличие от нерастворимых фибриллярных белков растворимые белки имеют почти сферическую (глобулярную) форму. Глобулярным белкам свойственнавысокоупорядоченная пространственная структура (конформация), которая способствует выполнению специфических биологических функций. В данном разделе разбираются особенности строения глобулярных белков на примере небольшого белка инсулина

Классификация по типу строения

По общему типу строения белки можно разбить на три группы:

Фибриллярные белки — образуют полимеры, их структура обычно высокорегулярна и поддерживается, в основном, взаимодействиями между разными цепями. Они образуют микрофиламенты, микротрубочки, фибриллы, поддерживают структуру клеток и тканей. К фибриллярным белкам относятся кератин и коллаген.

Глобулярные белки — водорастворимы, общая форма молекулы более или менее сферическая. Среди глобулярных и фибриллярных белков выделяют подгруппы. Например, изображённый на картинке справа глобулярный белок, триозофосфатизомераза, состоит из восьми α-спиралей, расположенных на внешней поверхности структуры и восьми параллельных β-слоёв внутри структуры. Белки с подобным трёхмерным строением называются αβ-баррелы (от англ. barrel — бочка)].

Мембранные белки — имеют пересекающие клеточную мембрану домены, но части их выступают из мембраны в межклеточное окружение и цитоплазму клетки. Мембранные белки выполняют функцию рецепторов, то есть осуществляют передачу сигналов, а также обеспечивают трансмембранный транспорт различных веществ. Белки-транспортёры специфичны, каждый из них пропускает через мембрану только определённые молекулы или определённый тип сигна