- •2. Значение исследований генетических процессов для различных отраслей человеческой деятельности
- •3. Выделение днк и рнк
- •5. Горизонтальный перенос генов и пластичность прокариотических геномов
- •6. Организация генома растений. Причины наиболее существенных отличий геномов растений от геномов животных
- •7. Физико-химические свойства днк
- •8. Методы анализа первичной структуры днк
- •9. Методы анализа вторичной структуры днк
- •10. Методы гибридизации днк
- •11. Гель-электрофорез – основные принципы
- •17. Разновидности и применение полимеразной цепной реакции
- •18. Доказательство полуконсервативного способа репликации днк Мэтью Мезельсоном и Франклином Сталем в 1958 г
- •19. Характеристика процесса репликации
- •20. Составляющие элементы процесса репликации
- •21. Молекулярный механизм процесса репликации
- •22 Особенности репликации различных геномов
- •23. Особенности репликации у бактерий
- •24. Особенности репликации у эукариотических организмов
- •25. Составляющие элементы процесса репликации (на примере бактерий)
- •27.Экзонуклеазные реакции днк-полимеразы I. 3’→ 5’-экзонуклеазная активность
- •30. Общая характеристика этапов репликации
- •31. Этапы репликации – инициация
- •32. Этапы репликации – элонгация
- •33. Этапы репликации – терминация
- •35. Способы репликации различных геномов
- •36. Строение геномов прокариотических организмови особенности их репликации
- •39. Репликоны хромосом эукариотических организмов
- •40. Доращивание теломерных концов. Проблема недорепликации теломерных концов
- •41. Длина теломерных концов и старение организма
- •42. Общая характеристика процесса транскрипции у прокариотических организмов
- •43. Общая характеристика процесса транскрипции у эукариотических организмов
- •45. Составляющие элементы процесса транскрипции
- •46. Механизм транскрипции
- •48. Отличие процесса транскрипции у про- и эукариот
- •56. Стадии инициации транскрипции
- •57. Элонгация транскрипции (прокариоты)
- •58. Ингибиторы транскрипции прокариот
- •59. Инициация транскрипции у эукариот
- •61. ТРнк: строение, функция, размер
- •64. Прокариотическая рибосома
- •65. Эукариотическая рибосома
- •66. Функциональные участки рибосом
- •67. Рибосомы: строение, финкция
- •68. Стадии трансляции– инициация
- •69. Белковые факторы, участвующие в процессе трансляции у бактерий e.Coliна стадии инициации
- •70.Стадии трансляции-элонгация.
- •71.Стадии трансляции-терминация.
- •72.Ингибиторы трансляции прокариотических организмов.
- •73.Ингибиторы трансляции эукариотических организмов.
- •74.Ингибиторы белкового синтеза прокариотических организмов
- •75.Доказательство триплетности генетического кода ф. Криком.
- •76.Свойства генетического кода
- •77. Механизм процесса обратной транскрипции
- •78. Биологическое значение обратной транскрипции
- •79. Повторяющиеся мобильные элементы: бактериальные транспозоны
- •81. Мобильные генетические элементы: ретровирусы
- •82. Мобильные генетические элементы: автономные ретротранспозоны
- •86.Описание схемы опытов Мезелсона и Сталя, доказывающих полуконсервативность репликации днк.Вопрос 18
- •83. Роль мобильных генетических элементов в геномах
- •84. Представления о консервативном способе репликации геномов
- •85. Представления о дисперсном способе репликации геномов
- •87. Биологический смысл репликации днк
- •88.Репликация- прерывистость синтеза днк на запаздывающей цепи
- •89. Доказательство Рейджи Оказаки прерывистости репликации на запаздывающей цепи
5. Горизонтальный перенос генов и пластичность прокариотических геномов
Изучение бактерий привело к открытию горизонтального переноса генов, который был описан в Японии в 1959 г.
Горизонтальный перенос генов - любой процесс, при котором организм или клетка передает ген.материал другому организму (клетке), не являющийся его потомком.
У прокариот м.происходить частичное объединение геномов. При конъюгации клетка-донор в ходе контакта передаёт клетке-реципиенту часть своего генома (в некот.случаях весь). Участки ДНК донора м.обмениваться на гомологичные участки ДНК реципиента. Вероятность такого обмена значима только для бакт.одного вида.
Способность клетки к трансформации возможна при особом ее состоянии, компетентностью (клеточной стенки и плазмалеммы: становится пористой, плазмалемма образует многочисленные впячивания, а на внешней поверхности появляются– факторы компетентности) . бактериальная клетка может поглощать и свободно находящуюся в среде ДНК, включая её в свой геном в случае высокой степени гомологии с собственной ДНК - трансформация. В природных условиях протекает обмен генетической информацией при помощи умеренных фагов (трансдукция). При трансдукции в вирионы попадает ДНК клетки-хозяина. Вирионы заражают другие клетки, и ДНК исходной бактериальной клетки проникает в другую бактериальную клетку. Вирусная ДНК интегрируется в бактериальную хромосому, а привнесенная бактериальная ДНК рекомбинирует с ДНК бакт. хромосомы. В рез.50% клеток оказываются трансформированными.
Кроме этого, возможен перенос нехромосомных генов при помощи плазмид определённого типа, кодирующих этот процесс, процесс обмена другими плазмидами и передачи транспозон.
При горизонтальном переносе новых генов не образуется (как то имеет место при мутациях), осуществляется создание разных генных сочетаний. Это важно так как естественный отбор действует на всю совокупность признаков организма.
Горизонтальный перенос генов - перенос генетич.информации от одного генома к другому, в особенности между двумя видами.
Для переноса необходимы факторы:
1. посредник для транспортировки генетической информации между организмами и клетками.
2.Молек-ный механизм для встраивания чужеродных кусков ДНК в хозяйский геном. Ретровирусы способны выполнять обе эти ф-ции.
Горизонтальный перенос можно обнаружить при значительном нарушении «непрерывности» филогенетического распределения определенного гена.
Горизонтально могут переносится два типа последовательностей:
1. последовательности их транспозиционных элементов
2.Геномные последовательности
Существует очень мало случаев, когда горизонтальный перенос геномных последовательностей был убедительно доказан. Многие подобные заявления впоследствии не были подтверждены на молекулярном уровне.
6. Организация генома растений. Причины наиболее существенных отличий геномов растений от геномов животных
Изучение геномов растений - задача значительно более сложная, чем исследование генома человека и других животных. Это связано со следующими обстоятельствами: • огромными размерами геномов, достигающими для отдельных видов растений десятков и даже сотен миллиардов пар нуклеотидов (п.н.): геномы с/х растений (кроме риса, льна и хлопка) по размерам либо близки к геному человека, либо превышают его во много раз • резкими колебаниями числа хромосом у различных растений - от двух у некоторых видов до нескольких сотен у других, причем не удается выявить строгой корреляции между размером генома и числом хромосом; • изобилием полиплоидных (содержащих более двух геномов на клетку) форм с близкими, но не идентичными геномами (аллополиплоидия); • чрезвычайной обогащенностью геномов растений (до 99%) "незначащей" (некодирующей, то есть не содержащей генов) ДНК, что резко затрудняет стыковку (расположение в правильном порядке) отсеквенированных фрагментов в общий крупноразмерный участок ДНК (контиг); • неполным (по сравнению с геномами дрозо-филы, человека и мыши) морфологическим, генетическим и физическим картированием хромосом; • практической невозможностью выделять в чистом виде индивидуальные хромосомы с помощью методов, обычно применяемых с этой целью для хромосом человека и животных (сортировка в потоке и использование гибридов клеток); • трудностью хромосомного картирования (определение расположения на хромосоме) отдельных генов с помощью гибридизации in situ, обусловленной как высоким содержанием в геномах растений "незначащей" ДНК, так и особенностями структурной организации хромосом растений; • эволюционной отдаленностью растений от животных, что серьезно осложняет использование для изучения геномов растений сведений, полученных при секвенировании генома человека и др.животных; • длительным процессом размножения большинства растений, что существенно замедляет их генетический анализ.
