Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
shpory_molek_mekh_genetiki.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
177.78 Кб
Скачать

45. Составляющие элементы процесса транскрипции

РНК-полимераза+НТФ +ДНК-матрица =РНК + ДНК-матрица + ФФн. РНК-полимераза E.coli – это белок который имеет четвертичную структуру. Одновременно в клетке присутствует около 7000 молекул данного РНК-полимеразы.

Субъединичный состав РНК-полимеразы E.coli:

2 αββδω – holo-фермент (полный)

2 αββω – core-фермент (150х115х110А)

Без δ-фактора это core-фермент. δ-фактор это сменный фактор специфичности (δ70, δ28, δ54 ).

Две α субъединицы это каркас РНК-пол. К ним крепятся остальные субъединицы.

β- субъединица отвечает за прочное связывание с ДНК за счет кластера положительно заряженных аминокислот.

β – в субъединице находится 2 каталитических центра. Один отвечает за инициацию, а другой за элонгацию РНК- цепи. Один центр при этом работает в holo-ферменте, а другой в core- ферменте.

ω: восстанавливает РНК-полимеразу обратно в дееспособную форму. Также обнаружено ее защитное/шаперонное действие на β'-субъединицу у микобактерий.

σ-субъединица играет центральную роль в инициации транскрипции,

будучи прямо вовлеченной в узнавание промотора и плавление ДНК.

В клетках E. coli имеется семь различных σ-факторов, каждый из

которых обеспечивает узнавание промоторов c определенными

последовательностями (т.е. определенные гены). В экспоненциальной фазе роста более 90% молекул холоферментa в клетке содержит субъединицу σ70. σ-фактор нарушает способность фермента связываться со случайным

участком ДНК примерно в 10 000 раз, и образующиеся комплексы ДНК-фермент становятся очень короткоживущими

46. Механизм транскрипции

Механизм транскрипции 4 этапа:

1. Узнавание промотора, 2. Инициация, 3. Элонгация, 4. Терминация Инициация транскрипции—сложный процесс, зависящий от последовательности ДНК вблизи транскрибируемой последоват-ти (а у эукариот также и от более далеких участков генома — энхансеров и сайленсеров) и от наличия или отсутствия различных белковых факторов.

Элонгация.Три основных биохимич.события характеризуют переход к элонгации в случае РНК-полимеразы кишечной палочки: отделение сигма-фактора, первая транслокация молекулы фермента вдоль матрицы и сильная стабилизация транскрипционного комплекса, который кроме РНК-полимеразы включает растущую цепь РНК и транскрибируемую ДНК. Эти же явления характерны и для РНК-полимераз эукариот. Переход от инициации к элонгации сопровожд-ся разрывом связей между ферментом, промотором, факторами инициации транскрипции, а в ряде случаев—переходом РНК-полимеразы в состояние компетентности в отношении элонгации (например, фосфорилирование CTD-домена у РНК-полимеразы II). Фаза элонгации заканч-ся после освобождения растущего транскрипта и диссоциации фермента от матрицы (терминация).

На стадии элонгации в ДНК расплетено прим.18 пар нуклеотидов. Примерно 12 нуклеотидов матричной нити ДНК образует гибридную спираль с растущим концом цепи РНК. По мере движения РНК-полимеразы по матрице впереди нее происходит расплетание, а позади — восстановление двойной спирали ДНК. Одновременно освобождается очередное звено растущей цепи РНК из комплекса с матрицей и РНК-полимеразой. Эти перемещения должны сопровождаться относительным вращением РНК-полимеразы и ДНК. Трудно себе представить, как это может происходить в клетке, особенно при транскрипции хроматина. Поэтому не исключено, что для предотвращения такого вращения двигающуюся по ДНК РНК-полимеразу сопровождают топоизомеразы.

Элонгация осуществляется с пом.основных элонгирующих факторов, необходимых, чтобы процесс не останавливался преждевременно.

В последнее время появились данные, показывающие, что регуляторные факторы также могут регулировать элонгацию. РНК-полимераза в процессе элонгации делает паузы на определенных участках гена. Особенно четко это видно при низких концентрациях субстратов. В некоторых участках матрицы длительные задержки в продвижении РНК-полимеразы, т. н. паузы, наблюдаются даже при оптимальных концентрациях субстратов. Продолжительность этих пауз может контролироваться факторами элонгации.

Терминация. У бактерий есть 2 мех-ма терминации транскрипции:

---ро-зависимый механизм, при котором белок Rho (ро) дестабилизирует водородные связи между матрицей ДНК и мРНК, высвобождая молекулу РНК.

---ро-независимый, при котором транскрипция останавливается, когда только что синтезированная молекула РНК формирует стебель-петлю, за которой расположено несколько урацилов (…УУУУ), что приводит к отсоединению молекулы РНК от матрицы ДНК.

---Терминация транскрипции у эукариот менее изучена. Она завершается разрезанием РНК, после чего к её 3' концу фермент добавляет несколько аденинов (…АААА), от числа которых зависит стабильность данного транскрипта.

47. Факторы, влияющие на процесс транскрипции Факторами транскрипции (другое название - специфические последовательности ДНК связующие факторы) в молекулярной биологии называют белки, связывающиеся с регуляторными участками ДНК с помощью своих ДНК-связывающих доменов и является частью системы, регулирует транскрипцию, то есть передачу генетической информации от ДНК к РНК [1] [2] .

Различные факторы транскрипции могут как способствовать связыванию РНК-полимеразы с промотором (в таком случае наблюдается активация транскрипции, а сам фактор называется «активатором»), так и предотвращать связывание РНК-полимеразы (в таком случае происходит репрессия транскрипции, а сам фактор называется «репрессором»). Факторы транскрипции выполняют такую ​​функцию либо самостоятельно, либо используя другие вспомогательные белки. В зависимости от функции, эти белки также делятся на «коактиваторы» и «корепресоры».

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]