- •2. Значение исследований генетических процессов для различных отраслей человеческой деятельности
- •3. Выделение днк и рнк
- •5. Горизонтальный перенос генов и пластичность прокариотических геномов
- •6. Организация генома растений. Причины наиболее существенных отличий геномов растений от геномов животных
- •7. Физико-химические свойства днк
- •8. Методы анализа первичной структуры днк
- •9. Методы анализа вторичной структуры днк
- •10. Методы гибридизации днк
- •11. Гель-электрофорез – основные принципы
- •17. Разновидности и применение полимеразной цепной реакции
- •18. Доказательство полуконсервативного способа репликации днк Мэтью Мезельсоном и Франклином Сталем в 1958 г
- •19. Характеристика процесса репликации
- •20. Составляющие элементы процесса репликации
- •21. Молекулярный механизм процесса репликации
- •22 Особенности репликации различных геномов
- •23. Особенности репликации у бактерий
- •24. Особенности репликации у эукариотических организмов
- •25. Составляющие элементы процесса репликации (на примере бактерий)
- •27.Экзонуклеазные реакции днк-полимеразы I. 3’→ 5’-экзонуклеазная активность
- •30. Общая характеристика этапов репликации
- •31. Этапы репликации – инициация
- •32. Этапы репликации – элонгация
- •33. Этапы репликации – терминация
- •35. Способы репликации различных геномов
- •36. Строение геномов прокариотических организмови особенности их репликации
- •39. Репликоны хромосом эукариотических организмов
- •40. Доращивание теломерных концов. Проблема недорепликации теломерных концов
- •41. Длина теломерных концов и старение организма
- •42. Общая характеристика процесса транскрипции у прокариотических организмов
- •43. Общая характеристика процесса транскрипции у эукариотических организмов
- •45. Составляющие элементы процесса транскрипции
- •46. Механизм транскрипции
- •48. Отличие процесса транскрипции у про- и эукариот
- •56. Стадии инициации транскрипции
- •57. Элонгация транскрипции (прокариоты)
- •58. Ингибиторы транскрипции прокариот
- •59. Инициация транскрипции у эукариот
- •61. ТРнк: строение, функция, размер
- •64. Прокариотическая рибосома
- •65. Эукариотическая рибосома
- •66. Функциональные участки рибосом
- •67. Рибосомы: строение, финкция
- •68. Стадии трансляции– инициация
- •69. Белковые факторы, участвующие в процессе трансляции у бактерий e.Coliна стадии инициации
- •70.Стадии трансляции-элонгация.
- •71.Стадии трансляции-терминация.
- •72.Ингибиторы трансляции прокариотических организмов.
- •73.Ингибиторы трансляции эукариотических организмов.
- •74.Ингибиторы белкового синтеза прокариотических организмов
- •75.Доказательство триплетности генетического кода ф. Криком.
- •76.Свойства генетического кода
- •77. Механизм процесса обратной транскрипции
- •78. Биологическое значение обратной транскрипции
- •79. Повторяющиеся мобильные элементы: бактериальные транспозоны
- •81. Мобильные генетические элементы: ретровирусы
- •82. Мобильные генетические элементы: автономные ретротранспозоны
- •86.Описание схемы опытов Мезелсона и Сталя, доказывающих полуконсервативность репликации днк.Вопрос 18
- •83. Роль мобильных генетических элементов в геномах
- •84. Представления о консервативном способе репликации геномов
- •85. Представления о дисперсном способе репликации геномов
- •87. Биологический смысл репликации днк
- •88.Репликация- прерывистость синтеза днк на запаздывающей цепи
- •89. Доказательство Рейджи Оказаки прерывистости репликации на запаздывающей цепи
42. Общая характеристика процесса транскрипции у прокариотических организмов
РНК-полимераза E.coli осуществляет транскрипцию всех бактериальных генов и состоит из нескольких субъединиц: α-35кДа, β‘-165кДа, β-155кДа, σ-чаще 70кДа (σ70). РНК-полимераза состава ααββ’σ70- holo-фермент (Еσ70), состава ααββ’- core-фермент (E). σ - сменный фактор специфичности, который диссоциирует после инициации транскрипции. Элонгация и терминация осуществляется core-ферментом. У Е.coli ~10 видов σ-субъединиц. Транскрипция генов теплового шока, оперонов gln или nif осуществляется σ54 в составе holo-фермента Eσ54 (54 кДа). Все субъединицы заряжены отрицательно: σ>α>β>β’ – расположены по убыванию заряда. В каждой субъединице имеется кластер (+)-заряженных участков, которыми они связываются с ДНК. Наибольшее число кластеров у –β’, который участвует в связывании фермента с ДНК, β-субъединица содержит активные центры - инициации и элонгации, α-субъединицы обеспечивают правильное взаимодействие фермента с промоторами. Рифампицин – блокирует инициацию, стрептолидигин – блокирует элонгацию, что говорит о разнесении активных центров в РНК-полимеразе. Узнавание и связывание RNA-pol с промотором осуществляется holo-ферментом Одновременно в клетке присутствует около 7000 молекул РНК-полимеразы. Только holo-фермент обладает высоким сродством к специфической последовательности нуклеотидов - промотору, сродство к остальным случайным последовательностям ДНК у него снижено в 10000 раз. У core-фермента одинаковое сродство к любой последовательности нуклеотидов. Сам по себе сигма - фактор обладает наименьшим сродством к ДНК по сравнению с другими субьединицами РНК-полимеразы, однако он придает holo-ферменту такую конформацию, которая обладает повышенным сродством к промотору. Стадии узнавания и связывания, а также инициации осуществляются holo-ферментом. Элонгация и терминация осущ-ся core-ферментом. Две α субъединицы - каркас РНК-полимеразы. К ним крепятся остальные субъединицы. β' - субъединица отвечает за прочное связывание с ДНК за счет кластера положительно заряженных аминокислот. В β - субъединице находятся два каталитических центра. Один отвечает за инициацию, а другой - за элонгацию. Один центр работает в holo-, а другой - в core- ферменте.
43. Общая характеристика процесса транскрипции у эукариотических организмов
У эукариот имеется 3 типа РНК-полимераз (не считая митохондриальной и хлоропластной): РНК полимеразаI - синтезирует в ядрышках рибосомные RNA (18S и 28S рРНК, кроме 5S); РНК-полимеразаII - синтезирует mRNA и некоторых sRNA; РНК-полимеразаIII - синтезирует tRNA, sRNA, 5S rRNA. RNA-полимеразы эукариот отличаются: количеством субъединиц – 2 большие (120-220кДа) и до 8 малых (10-100кДа), потребностью в ионах Mg и Mn, чувствительностью к – амонитину - токсину бледной поганки - пептиду включающему D-аминокислоты: polI - устойчива, polII - ингибируется при концентрации 10-8М, polIII - при 10-6М амонитина. РНК-полимеразы I,II,III кодируются в ядре. Большие субъединицы гомологичны β и β`-субъединицам эубактерий
PolII Человека содержит более 10 субъединиц, слабо ассоциирующих друг с другом. Некоторые из них принадлежат к основным факторам транскрипции (GTF). Белки holo-фермента PolII дрожжей. Pol II - РНК-Полимеразная активность, взаимодействует с множеством общих и тканеспецифических факторов транскрипции, участвует в выборе точки инициации транскрипции. TFIIB - Связывает Pol II и TBP на промоторе, участвует в выборе точки инициации транскрипции TFIIF - Взаимодействует с Pol II, стимулирует элонгацию транскрипции Pol II, компонент субкомплекса SRB/медиатор TFIIH - Активность ДНК-зависимой ATPазы, ДНК-геликазная активность, обладает активностью CTD-киназы SRB2, SRB5 - Участвуют в образовании инициационного комплекса, стимулируют базальный и индуцированный синтез РНК, взаимодействуют с TBP, компоненты субкомплекса SRB/медиатор GAL11/SPT13 - Участвуют в образовании инициационного комплекса, стимулируют базальный и индуцированный синтез РНК, компоненты субкомплекса SRB/медиатор, предположительно взаимодействуют с активаторами транскрипции SUG1 - Компонент субкомплекса SRB/медиатор, предположительно взаимодействует с активаторами транскрипции SRB4, SRB6, SRB7, SRB8, SRB9, SRB10, SRB11 - Компоненты субкомплекса SRB/медиатор, предположительно взаимодействуют с CTD-доменом Pol II
44. Открытие процесса транскрипции
Э.Волкин и Л.Астрахан в 1956 г. обнаружили, что при заражении бактериальных клеток бактериофагом Т2, последние начинают синтезировать новые типы РНК, сходные по нуклеотидному составу с ДНК бактериофага. Сидней Бреннер, Франсуа Жакоб и Мэтью Мезельсон в 1961 г. поставили эксперимент, показывающий, что после инфицирования бактерий E.coli бактериофагом Т2 происходит синтез большого количества нового типа РНК, которая была названа матричной или информационной. РНК-полимераза у бактерий была открыта независимо Сэмом Вайссом и Джерардом Хурвицем в 1960.
