Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
shpory_molek_mekh_genetiki.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
177.78 Кб
Скачать

31. Этапы репликации – инициация

Инициация. Точки начала репликации на молекуле ДНК имеют специфическую последовательность оснований, богатую парами А-Т. Процесс начинается с того, что с каждой такой последовательностью связываются несколько молекул специальных узнающих белков (у прокариот это белки DnaA). Первым начинает действовать фермент геликаза (от helix - спираль). Он обеспечивет расплетение двойной спирали родительской ДНК путем разрыва водородных связей между нуклеотидами. На это затрачивается энергия гидролиза АТФ – по две молекулы на разделение 1 пары нуклеотидов. У эукариот одновременно происходит вытеснение данного участка ДНК из связи с гистонами и другими хромосомными белками. Однако расплетение спирали на некотором участке создает суперспирализацию перед этим участком, так как каждая молекула ДНК некоторыми участками зафиксирована на ядерном матриксе. Поэтому она не может свободно вращаться при какого-то своего участка. Это и вызывает суперспирализацию, что препчтствует дальнейшему расплетению цепи. Эта проблема решается с помощью ферментов топоизомераз. Существует два типа топоизомераз (топоизомераза типа I и топоизомераза типа II). Топоизомераза I разрывает одну из цепей ДНК, и переносит один свободный конец на себя. Это позволяет участку ДНК от места расплетения до места разрыва вращаться вокруг целой цепи, что предупреждает образование супервитков. Впоследствии концы разорванной цепи вновь замыкаются. Топоизомераза II разрывает обе цепи ДНК, перенося соответствующие концы на себя. Это позволяет более эффективно решать проблему суперспирализации при расплетении ДНК.

После расплетения двойной спирали хеликазой, с каждой из двух нитей связываются специальные SSB-белки. Они обладают повышенным сродством к одноцепочечным участкам ДНК и стабилизируют их в таком состоянии. Механизм действия основных ферментов репликации ДНК-полимераз таков, что синтез новой полинуклеотидной цепи не может начаться с включения в нее первого нуклеотида. Синтез идет только как удлинение уже существующего полинуклеотида, который комплементарен матрице и образует с ней двуспиральный комплекс матрица-затравка. Во всех живых системах такой затравкой служит не ДНК, а короткая РНК. РНК-затравка синтезируется ферментом праймазой (или РНК-полимеразой).

32. Этапы репликации – элонгация

- осуществляется синтез цепей ДНК. Каждый нуклеотид включается в цепь лишь в случае его комплементарности. Ферментный комплекс функционирует так, что одна из двух цепей растет с некоторым опережением по сравнению с другой цепью. Соответственно, первая цепь называется лидирующей, а вторая – запаздывающей. Важнейшее обстоятельство состоит в том, что лидирующая цепь образуется в виде непрерывного очень длинного фрагмента. Запаздывающая цепь образуется в виде серии относительно коротких фрагментов –фрагменты Оказаки. В виде фрагментов Оказаки синтезируется та цепь, направление образования которой противоположно направлению движения соответствующей репликативной вилки. Рост цепей ДНК осуществляется ферментами ДНК-полимеразами. Удлиннение цепи ДНК (или отдельного ее фрагмента) всегда происходит в направлении от 5’-конца к 3’-концу. Это означает, что очередной новый нуклеотид присоединяется к 3’-концу растущей цепи. У прокариот известно три ДНК-полимеразы: ДНК-полимераза I, ДНК-полимераза II и ДНК-полимераза III. ДНК-полимераза III у прокариот является основным ферментом. Он осуществляет синтез лидирующей цепи и фрагментов Оказаки в направлении 5’-3’ от 3’-ОН-затравки. Помимо ДНК-полимеразной активности, ДНК-полимераза III обладает еще одной – 3’-5’-экзонуклеазной. Последняя срабатывает в тех случаях, когда допущена ошибка и в строющуюся цепь включен «неправильный» нуклеотид. Тогда, распознав дефект спаривания оснований, фермент отщепляет с растущего (3’-) конца последний нуклеотид, после чего опять начинает работать как ДНК-полимераза. На лидирующей цепи ДНК-полимераза III движется вслед за хеликазой до конца репликона (или всей молекулы). На запаздывающей цепи ДНК-полимераза III доходит до РНК-затравки предыдущего фрагмента Оказаки и отделяется. На смену ДНК-полимеразе III приходит ДНК-полимераза I. Этот вспомагательный фермент обладает тремя ферментативными активностями. Первая из них – 5’-3’ – экзонуклеазная. За счет этой активности осуществляется последовательное отщепление нуклеотидов с 5’-конца РНК-затравки предшествующего фрагмента. На освобождающееся место фермент включает дезоксирибонуклеотиды, присоединяя их к 3’-концу «своего» фрагмента (ДНК-полимеразная активность). И, наконец, подобно ДНК-полимеразе III, ДНК-полимераза I может при необходимости корректировать свою работу с помощью 3’-5’ – экзонуклеазной активности. Работа ДНК-полимеразы I завершается, когда растущий фрагмент вплотную доходит до предыдущего фрагмента.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]