- •1.Історія хімії: особливості, мета та завдання. Основні гіпотези виникнення слова “хімія” .
- •2.Періодизація історії хімії. Загальна характеристика п'яти періодів.
- •Розвиток знань про навколишнє середовище первісних людей.
- •Зародження та розвиток хімічних знань в стародавніх Месопотамії (шумери) та Китаї.
- •6.Особливості пізнання хімічних явищ стародавніми греками. Зародження та розвиток вчення про першоелементи-стихії: Фалес, Анаксимен, Герокліт, Емпедокл, Анаксагор.
- •7.Алхімія арабів (Гебер, Разес, Авіценна).
- •8.Атомістика у арабів.
- •9.Грецька та Єгипетська алхімія.
- •10. Алхімія західної Європи (Альберт Больштедський, Бекон, Лулліус та інші).
- •11.Практичні відомості з хімії в Київській Русі.
- •12. Загальна характеристика періоду об'єднання (підперіоди).
- •13. Загальна характеристика Ятрохімії: мета, основні досяг. Та відношення до алхімії
- •15. Загальна характеристика уявлень стосовно газоподібних речовин (повітря) на початок періоду об'єднання.
- •16. Передумови створення та основні положення теорії флогістона г.Е.Шталя.
- •17. Відкриття нових газів: вуглекислий газ та азот, водень та кисень
- •18. Крах теорії флогістона. Киснева теорія горіння Лавуазье.
- •19. Киснева теорія кислот та класифікація простих речовин Лавуазье.
- •20 Наукова діяльність Ломоносова: праці з фізики, з хімії.
- •21. Історія відкриття кількісних законів.
- •22 Розвиток атомної теорії: праці Дальтона та Берцеліуса.
- •23. Молекулярна гіпотеза Авогадро
- •24.Атомна реформа Канніцаро
- •25. Передумови розвитку аналітичної хімії.
- •26.Перші спроби класифікації речовин Ломоносов, Лемері, Берцеліус
- •27. Хімічні теорії в органічній хімії: т. Віталізму, т. Радикалів, т. Типів
- •28. Основні положення теорії будови органічних сполук Бутлерова
- •29. Передумови формування фізичної хімії як самостійної хімічної дисципліни
- •30. Розвиток електрохімії (Фарадей, Нернст).
- •31.Зародження та розвиток термохімії, термодинаміки та хімічної кінетики.
- •32. Тед Арреніуса. Історія розвитку уявлень про кислоти та основи (Лавуазье, Лібіх, Берцеліус, Арреніус).
- •33. Формально-класифікаційна теорія кислот та основ Франкліна. Дефекти теорії Франкліна
- •Хімічна теорія кислот Ганча.
- •Спроби класифікації хімічних елементів: праці Деберейнера.
- •Спроби класифікації хімічних елементів: праці Лотара Юліуса Мейера.
- •Відкриття періодичного закону.
- •Основні принципи будови періодичної системи хімічних елементів.
- •Відкриття нових елементів: екабора, екасиліція та екакремнія.
- •Відкриття інертних газів та їх місця в таблиці Менделєєва.
- •Діяльність д.І.Менделєєва у інших галузях хімії.
- •Основні положення координаційної теорії а.Вернера.
- •Розвиток координаційної теорії в Росії: праці Багратіона, Мусіна-Пушкіна, Клауса, Курнакова, Чугаєва.
- •51.Розвиток хімічної мови у стародавньому світі. Стан хімічної мови у Середньовіччі.
- •Перші спроби реформування хімічної мови: роботи Дальтона.
- •Перші спроби реформування хімічної мови: роботи Берцеліуса, Гесса, Деві, Менделєєва.
- •Створення та робота комісії iupас. Процедура утворення назв нових елементів.
- •Загальна характеристика шляхів розвитку хімії у XX ст.
- •Екологічна хімія
- •57. Загальна характеристика наукової діяльності Київського фізико-хімічного товариства (Алексеев, Бунге, Реформатський)
- •58.Загальна характеристика наукової діяльності Новоросійського товариства дослідників природи (Пісаржевський, Мелікішвілі)
- •59. Теорія радіоактивного розпаду Резерфорда і Содді.
- •Моделі будови атому початку XX ст. (Томсон, Перрен, Нагаока).
- •Планетарна модель будови атому Резерфорда. Досліди Резерфорда.
- •Квантова теорія атома н.Бора.
- •Первый постулат Бора: постулат стационарных состояний
- •Второй постулат Бора: правило частот
- •Відкриття штучної радіоактивності (Ірен та Фредерік Жоліо-Кюрі).
- •Початок хімії антибіотиків (Лістер, , Флорі, Чейн, Дюбо)
- •Впровадження комп'ютерних технологій у проведення та дослідження хімічних процесів.
- •Розвиток супрамолекулярної хімії.
- •Нові хімічні технології: хімія полімерів, біотехнологія, генна інженерія, технология днк-аналізу, нанотехнології.
Початок хімії антибіотиків (Лістер, , Флорі, Чейн, Дюбо)
Перший природний антибіотик був відкритий в 1929 р. англійським бактеріологом А. Флемінгом . Відкриття було справою випадку. Переглядаючи чашки з посівом стафілокока, А. Флемінг помітив, що на чашці, забрудненій пліснявою Penicillium, ріст стафілокока відсутній. Виділення колонії плісняві в чисту культуру і повторення досвіду підтвердило колишні результати. Виявилось, що пліснява пригнічувала ріст не лише стафілокока, але і усіх грампозитивних мікробів . При вивченні пліснявого гриба Penicillum notatum, що перешкоджає росту бактеріальної культури, А. Флемінг виявив речовину, що затримує ріст бактерій, і назвав його пеніциліном .
Потужним стимулом для дослідження антибіотичних речовин стало отримання мікробіологом Р. Дюбо тиротрицину (1939) із спорової палички Bac. brevis. Тиротрицин в нікчемних концентраціях вбивав патогенних бактерій як в пробірці, так і в організмі зараженої тварини. З відкриттям тиротрицину поновилися роботи по вдосконаленню методів отримання і очищення пеніциліну. Особливо інтенсивні дослідження почали проводитися на батьківщині А. Флемінга оксфордською групою учених, яку очолили лікар-бактеріолог X. Флорі і біохімік Д. Чейн. У 1941 р. ними був отриманий чистий кристалічний концентрований сухий препарат - пеніцилін. Препарат мав високу активність: в нікчемній концентрації (1: 5107) згубно діяв на гноєрідніх коків, залишаючись нетоксичним для людини. Велике практичне значення пеніциліну привело в дуже короткий час до створення промисловості пеніциліну.
Услід за пеніциліном була відкрита серія інших антибіотиків, що утворюються грибами, бактеріями, актиноміцетами і іншими організмами. Так, в 1942 р. Г.Ф. Гаузе і М. Г Бражнікова отримали антибіотик Граміцидін радянський (Граміцидін С). Продуцентом його виявилася спорова паличка Bac. brevis. Граміцидін С відрізняється від тиротрицину Р. Дюбо по хімічному складу і біологічній дії. Він є поліпептидом, що складається з п'яти типів амінокислот. Тиротрицин включає два різні поліпептиди - тироцидин і Граміцидин. Останній містить 24 амінокислотні залишки. Крім того, Граміцидин С характеризується ширшим спектром антибактеріальної дії.
У 1944 р. С. Ваксман із співробітниками з променистого грибка Streptomyces griseus отримали антибіотик стрептоміцин. Це відкриття стало потужним поштовхом до усебічного вивчення актиноміцетів і пошуку серед них продуцентів нових антибіотиків
Впровадження комп'ютерних технологій у проведення та дослідження хімічних процесів.
Розвиток супрамолекулярної хімії.
Супрамолекулярная (надмолекулярная) химия (Supramolecular chemistry) — междисциплинарная область науки, включающая химические, физические и биологические аспекты рассмотрения более сложных, чем молекулы, химических систем, связанных в единое целое посредством межмолекулярных (нековалентных) взаимодействий. Объекты супрамолекулярной химии —супрамолекулярные ансамбли, строящиеся самопроизвольно из комплементарных, то есть имеющих геометрическое и химическое соответствие фрагментов, подобно самопроизвольной сборке сложнейших пространственных структур в живой клетке. Одной из фундаментальных проблем современной химии является направленное конструирование таких систем, создание из молекулярных «строительных блоков» высокоупорядоченных супрамолекулярных соединений с заданной структурой и свойствами. Супрамолекулярные образования характеризуются пространственным расположением своих компонентов, их архитектурой, «супраструктурой», а также типами межмолекулярных взаимодействий, удерживающих компоненты вместе. В целом межмолекулярные взаимодействия слабее, чем ковалентные связи, так что супрамолекулярные ассоциаты менее стабильны термодинамически, более лабильны кинетически и более гибки динамически, чем молекулы.
Согласно терминологии супрамолекулярной химии, компоненты супрамолекулярных ассоциатов принято называть рецептор (ρ) исубстрат (σ), где субстрат — меньший по размеру компонент, вступающий в связь. Термины соединение включения, клатрат исоединение (комплекс) типа гость—хозяин характеризуют соединения, существующие в твёрдом состоянии и относящиеся к твёрдым супрамолекулярным ансамблям.
Селективное связывание определённого субстрата σ и его рецептора ρ с образованием супермолекулы σρ происходит в результате процесса молекулярного распознавания. Если помимо центров связывания рецептор содержит реакционноспособные функциональные группы, он может влиять на химические превращения на связанном с ним субстрате, выступая в качестве супрамолекулярного катализатора. Липофильный, растворимый в мембранах рецептор может выступать в роли носителя, осуществляя транспорт, перенос связанного субстрата. Таким образом, молекулярное распознавание, превращение, перенос — это основные функции супрамолекулярных объектов.
Супрамолекулярную химию можно разделить на две широкие, частично перекрывающиеся области, в которых рассматриваются соответственно: 1) супермолекулы — хорошо определённые, дискретные олигомолекулярные образования, возникающие за счёт межмолекулярной ассоциации нескольких компонентов (рецептора и субстрата(ов)) в соответствии с некоторой «программой», работающей на основе принципов молекулярного распознавания; 2) супрамолекулярные ансамбли — полимолекулярные ассоциаты, возникающие в результате спонтанной ассоциации неопределённо большого числа компонентов в специфическую фазу, характеризуемую более или менее определённой организацией на микроскопическом уровне и макроскопическими свойствами, зависящими от природы фазы (плёнка, слой, мембрана, везикула, мезоморфная фаза, кристалл и т. д.).
Впервые термин «супрамолекулярная химия» был введен в 1978 г. лауреатом Нобелевской премии Жаном-Мари Леном и определен как «химия, описывающая сложные образования, которые являются результатом ассоциации двух (или более) химических частиц, связанных вместе межмолекулярными силами». Последующие годы были отмечены взрывообразным развитием этой молодой междисциплинарной науки.
