- •Введение
- •1. Кинематика резания
- •1.1. Основные методы формообразования
- •1.2. Основные поверхности токарного резца и его геометрические параметры
- •1.3. Предпосылки выбора оптимальной геометрии инструмента
- •1.3.1 Назначение и выбор переднего угла
- •1.3.2. Назначение и выбор заднего угла
- •1.3.3. Выбор угла наклона главной режущей кромки
- •1.3.4 Выбор главного и вспомогательного углов в плане
- •1.3.5. Выбор радиуса при вершине резца
- •1.4. Основные движения при резании
- •Вопросы для самопроверки:
- •Основные движения при резании?
- •2. Схемы резания. Режимы резания. Геометрия срезаемого слоя
- •2.1. Классификация способов обработки резанием
- •2.2 Классификация схем резания
- •2.3. Параметры режима резания.
- •2.4 Параметры сечения срезаемого слоя
- •2.5. Порядок выбора и расчета параметров режима резания (на примере точения)
- •Вопросы для самопроверки:
- •3. Инструментальные материалы
- •3.1. Основные свойства инструментальных материалов
- •3.2. Виды инструментальных материалов и их классификация и область применения
- •3.2.1. Углеродистые и легированные инструментальные стали
- •3.2.2. Легированные инструментальные стали
- •3.2.3. Быстрорежущие инструментальные стали
- •3.2.4. Твердые сплавы
- •3.2.5. Минералокерамика
- •3.2.6. Сверхтвердые инструментальные материалы (стм)
- •3.2.7. Монокристаллические материалы
- •Вопросы для самопроверки:
- •4. Динамика резания
- •4.1. Схематизация процесса стружкообразования
- •3.2. Кинематические соотношения
- •4.3. Степень деформации при простом сдвиге
- •4.4. Определение степени деформации при резании
- •4.5. Нарост при резании
- •4.6 Силы резания. Технологические составляющие силы резания
- •4.7. Эмпирические формулы для расчета технологических составляющих силы резания.
- •4.8 Влияние глубины резания и подачи на составляющие силы резания
- •4.9 Физические составляющие силы резания
- •4.9. Работа резания
- •4.10 Вибрации при резании
- •Вопросы для самопроверки:
- •5. Термодинамика резания
- •5.1. Источники и распределение теплоты в зоне резания
- •5.2 Методы измерения температуры в зоне резания
- •Бесконтактный метод. Для измерения температуры применяются специальные приборы – пирометры, которые регистрируют тепловое излучение, исходящее от нагретого тела (рис.4.9).
- •5.4 Влияние различных факторов на температуру в зоне резания
- •Р ис.5.11 Влияние геометрии инструмента
- •Вопросы для самопроверки:
- •6. Износ и стойкость режущего инструмента
- •6.1 Виды износа режущего инструмента
- •От скорости резания:
- •6.2 Развитие очагов износа на контактных площадках режущего инструмента
- •Твёрдосплавного(а, в) и быстрорежущего(б, г) инструментов
- •6.3 Критерии износа режущего инструмента
- •Величины износа по задней поверхности
- •Поверхности от времени работы инструмента
- •6.4 Влияние различных факторов на износ и стойкость режущего инструмента
- •6.5 Скорость резания, допускаемая режущими свойствами режущего инструмента
- •6.7 Стойкость режущего инструмента
- •6.18. Зависимость стойкости инструмента от параметров режима резания
- •Вопросы для самопроверки:
- •7. Качество изделия
- •Вопросы для самопроверки:
- •8. Надежность резания
- •8.1 Диагностика как средство повышения надежности2
- •8.2 Проблема надежности режущего инструмента в условиях автоматизированного производства
- •8.3 Классификация методов контроля состояния режущего инструмента
- •С низкой отражательной способностью:
- •Pис. 8.5. Устройство для измерения радиального износа режущего инструмента:
- •Вопросы для самопроверки:
- •9. Управление резанием
- •9.1 Задачи и особенности управления процессом резания
- •9.2 Физические предпосылки управления процессом резания. Структурная модель процесса резания
- •9.3 Управление процессом стружкообразования3
- •Вопросы для самопроверки:
- •10. Роль внешней среды при резании металлов
- •10.1. Действия внешних сред в зоне резания
- •10.2. Проникновение внешней среды на поверхности контакта режущего инструмента с обрабатываемым материалом
- •10.3. Способы и техника применения технологических сред при резании металлов
- •10.4. Способы активации сож.
- •10.5. Нетрадиционные способы подачи сож в зону резания и новые технологические среды
- •11. Виды обработки резанием
- •11.1. Точение
- •11.2 Сверление, зенкерование, развертывание
- •11.3 Фрезерование
- •При фрезеровании.
- •11.4. Протягивание
- •11.5. Нарезание резьбы
- •11.6. Шлифование
- •11.6.1 Особенности процесса резания при шлифовании
- •11.6.2. Работа единичного зерна
- •11.6.3. Абразивные инструменты и их маркировка
- •11.6.4. Плоское и круглое шлифование
- •Литература
10.2. Проникновение внешней среды на поверхности контакта режущего инструмента с обрабатываемым материалом
Проявление благотворного влияния технологических сред на процесс резания и изнашивания режущего инструмента возможно лишь при условии проникновения их на поверхности контакта режущего инструмента с обрабатываемым материалом. При низких скоростях резания контакт режущего инструмента и обрабатываемого материала не сплошной и вся зона его испещрена мельчайшими порами - капиллярами размером от долей микрометра до нескольких их десятков. Периодическое торможение и остановка отдельных объемов срезаемого слоя металла на поверхности инструмента вызывают образование вакуумных полостей, способствующих проникновению смазочной жидкости или иной технологической среды в зону резания и образованию смазочных слоев на поверхностях контакта режущего инструмента с обрабатываемым материалом.
Изучая микрофотографию корня стружки видно, что отдельные элементы типичной стружки скалывания разделены между собой капиллярами, насквозь пронизывающими стружку на всю ее толщину, с прирезцовой стороны стружки рядом с каждым элементом видны вакуумные полости, ширина которых составляет примерно третью - четвертую часть ширины основания элемента стружки. При образовании сливной стружки отдельные элементы ее слабо различимы, но капилляры в ней видны достаточно четко. Вакуумные полости образуются также в результате частичного разрушения нароста.
Между основанием нароста, в передней его части, и обрабатываемым материалом образуется вакуумная полость в результате отрыва или разрушении части вершины нароста сходящей по нему стружкой, которые образуются в процессе резания и, естественно, заполняются окружающей зону резания технологической средой. Среда таким путем поступает на поверхность контакта инструмента с обрабатываемым материалом.
Кроме того, имеющие место при резании металлов низкочастотные колебания заготовки не совпадают по фазе с высокочастотными колебаниями инструмента, в результате чего поверхность контакта его с обрабатываемым материалом периодически становится открытой для проникновения внешней среды на поверхности контакта режущего инструмента с обрабатываемым материалом. В результате этого в разные моменты времени плотность контакта инструмента с обрабатываемым материалом различна и достаточно велика вероятность полного нарушения контакта и образования открытых каналов для проникновения в них окружающей среды и образования смазочных слоев. Хотя механизм проникновения технологических сред в зону резания до настоящего времени остается предметом обсуждения, установленным является тот факт, что СОЖ и другие среды, несмотря на громадные давления, проникают на поверхности контакта и существенно влияют на процесс резания и изнашивания режущего инструмента, Поскольку температура в зоне резания почти всегда выше 100 0С, жидкость попадает на поверхности контакта не в обычном своем агрегатном состоянии, а в виде паров и отдельных частиц - молекул, их радикалов или ионов.
Путем применения СОЖ можно существенно повысить экономичность механической обработки. В некоторых случаях применение эффективной технологической среды является единственным техническим средством, обеспечивающим возможность нормального резания. Решение вопросов применения СОЖ и других сред при резании металлов осуществляется двумя путями: синтезированием эффективных смазочно-охлаждающих жидкостей и разработкой новых способов подачи их в зону резания, путем создания новых технологических сред.
Эффективность какой-либо технологической среды может оцениваться коэффициентом увеличения стойкости инструмента КТ, представляющим собой отношение стойкости режущего инструмента Ттс., при применении какой-то технологической среды или выбранного какого-то способа ее подачи, к стойкости режущего инструмента на той же технологической операции и при том же режиме резания, в среде атмосферного воздуха Твозд.
(10.1)
Здесь видно, что чем эффективнее среда или метод ее подачи, тем больше значение этого коэффициента.
Применение СОЖ обычно обеспечивает увеличение стойкости режущего инструмента в 1,5…2,0 раза. Соответственно этому и коэффициент увеличения стойкости имеет значения КТ = 1,5…2,0 в зависимости от химического состава, смазочно-охлаждающей жидкости и способа ее подачи в зону резания.
