- •Введение
- •1. Кинематика резания
- •1.1. Основные методы формообразования
- •1.2. Основные поверхности токарного резца и его геометрические параметры
- •1.3. Предпосылки выбора оптимальной геометрии инструмента
- •1.3.1 Назначение и выбор переднего угла
- •1.3.2. Назначение и выбор заднего угла
- •1.3.3. Выбор угла наклона главной режущей кромки
- •1.3.4 Выбор главного и вспомогательного углов в плане
- •1.3.5. Выбор радиуса при вершине резца
- •1.4. Основные движения при резании
- •Вопросы для самопроверки:
- •Основные движения при резании?
- •2. Схемы резания. Режимы резания. Геометрия срезаемого слоя
- •2.1. Классификация способов обработки резанием
- •2.2 Классификация схем резания
- •2.3. Параметры режима резания.
- •2.4 Параметры сечения срезаемого слоя
- •2.5. Порядок выбора и расчета параметров режима резания (на примере точения)
- •Вопросы для самопроверки:
- •3. Инструментальные материалы
- •3.1. Основные свойства инструментальных материалов
- •3.2. Виды инструментальных материалов и их классификация и область применения
- •3.2.1. Углеродистые и легированные инструментальные стали
- •3.2.2. Легированные инструментальные стали
- •3.2.3. Быстрорежущие инструментальные стали
- •3.2.4. Твердые сплавы
- •3.2.5. Минералокерамика
- •3.2.6. Сверхтвердые инструментальные материалы (стм)
- •3.2.7. Монокристаллические материалы
- •Вопросы для самопроверки:
- •4. Динамика резания
- •4.1. Схематизация процесса стружкообразования
- •3.2. Кинематические соотношения
- •4.3. Степень деформации при простом сдвиге
- •4.4. Определение степени деформации при резании
- •4.5. Нарост при резании
- •4.6 Силы резания. Технологические составляющие силы резания
- •4.7. Эмпирические формулы для расчета технологических составляющих силы резания.
- •4.8 Влияние глубины резания и подачи на составляющие силы резания
- •4.9 Физические составляющие силы резания
- •4.9. Работа резания
- •4.10 Вибрации при резании
- •Вопросы для самопроверки:
- •5. Термодинамика резания
- •5.1. Источники и распределение теплоты в зоне резания
- •5.2 Методы измерения температуры в зоне резания
- •Бесконтактный метод. Для измерения температуры применяются специальные приборы – пирометры, которые регистрируют тепловое излучение, исходящее от нагретого тела (рис.4.9).
- •5.4 Влияние различных факторов на температуру в зоне резания
- •Р ис.5.11 Влияние геометрии инструмента
- •Вопросы для самопроверки:
- •6. Износ и стойкость режущего инструмента
- •6.1 Виды износа режущего инструмента
- •От скорости резания:
- •6.2 Развитие очагов износа на контактных площадках режущего инструмента
- •Твёрдосплавного(а, в) и быстрорежущего(б, г) инструментов
- •6.3 Критерии износа режущего инструмента
- •Величины износа по задней поверхности
- •Поверхности от времени работы инструмента
- •6.4 Влияние различных факторов на износ и стойкость режущего инструмента
- •6.5 Скорость резания, допускаемая режущими свойствами режущего инструмента
- •6.7 Стойкость режущего инструмента
- •6.18. Зависимость стойкости инструмента от параметров режима резания
- •Вопросы для самопроверки:
- •7. Качество изделия
- •Вопросы для самопроверки:
- •8. Надежность резания
- •8.1 Диагностика как средство повышения надежности2
- •8.2 Проблема надежности режущего инструмента в условиях автоматизированного производства
- •8.3 Классификация методов контроля состояния режущего инструмента
- •С низкой отражательной способностью:
- •Pис. 8.5. Устройство для измерения радиального износа режущего инструмента:
- •Вопросы для самопроверки:
- •9. Управление резанием
- •9.1 Задачи и особенности управления процессом резания
- •9.2 Физические предпосылки управления процессом резания. Структурная модель процесса резания
- •9.3 Управление процессом стружкообразования3
- •Вопросы для самопроверки:
- •10. Роль внешней среды при резании металлов
- •10.1. Действия внешних сред в зоне резания
- •10.2. Проникновение внешней среды на поверхности контакта режущего инструмента с обрабатываемым материалом
- •10.3. Способы и техника применения технологических сред при резании металлов
- •10.4. Способы активации сож.
- •10.5. Нетрадиционные способы подачи сож в зону резания и новые технологические среды
- •11. Виды обработки резанием
- •11.1. Точение
- •11.2 Сверление, зенкерование, развертывание
- •11.3 Фрезерование
- •При фрезеровании.
- •11.4. Протягивание
- •11.5. Нарезание резьбы
- •11.6. Шлифование
- •11.6.1 Особенности процесса резания при шлифовании
- •11.6.2. Работа единичного зерна
- •11.6.3. Абразивные инструменты и их маркировка
- •11.6.4. Плоское и круглое шлифование
- •Литература
8.3 Классификация методов контроля состояния режущего инструмента
Существующие методы активного контроля состояния режущего инструмента можно разделить на прямые и косвенные (рис. 7.1):
а) прямые методы измерения. Эти методы предусматривают непосредственное измерение параметров износа, при этом контролируется износ (по лунке, образующейся на передней поверхности), расстояние от режущей кромки до центра лунки, глубина лунки, ширина ленточки износа по задней поверхности, уменьшение объема или массы инструмента, размерный износ режущей кромки, разброс размеров деталей в партии и т.д. Указанные параметры могут быть определены радиоактивными, оптико-телевизионными, лазерными, электромеханическими, ультразвуковыми или пневматическими методами.
Радиоактивный метод основан на применении радиоактивных датчиков. Режущая пластина облучается нейтронами, и в процессе резания небольшие радиоактивные частицы инструмента отходят вместе со стружкой. Стружка проходит через измерительную головку, где измеряется уровень радиоактивности. Уровень радиоактивности стружки зависит от объема унесенного инструментального материала и, следовательно, от полного износа инструмента. Радиоактивные частицы предлагается размещать по границам зоны износа (рис. .2) или на задней грани на уровне величины критического износа (hз.кр.). Падение радиоактивности означает, что зона износа распространилась дальше мест расположения радиоактивных частиц.
Рис. 8.1. Методы измерения износа режущего инструмента
Рис. 8.2. Режущий инструмент, оснащенный радиоактивными частицами
Недостатками данных способов являются низкая точность, сложная измерительная аппаратура, невозможность работы с переточенным РИ, необходимость работы с радиоактивными веществами. Поэтому несмотря на относительную простоту реализации данного способа, он практически не получил распространения.
Оптические и оптико-электронные устройства измерения износа основаны на том, что с изменением износа изменяется отражательная способность задней грани инструмента.
Рис. 8.3. Оптико-электронный датчик:
1 - державка инструмента, 2 - режущая пластина, 3 - осветитель, LL - фокусирующие линзы, Pт - фотосопротивление.
В устройстве (рис. 8.3) оптико-электронный датчик фокусирует изображение на оптическую щель, за которой располагается катод фотоусилителя. Датчик обладает высокой разрешающей способностью: 0,0025 мм. Существует еще несколько схем применения подобных датчиков. На рис. 8.4 показана схема контроля износа шлифовального круга, особенностью которого является низкая отражательная способность. Поэтому на круг закрепляют две светоотражающие пластинки, одна из которых уменьшается в размерах с износом круга. Износ круга измеряется, как уменьшение отражательной способности этой пластины.
Учитывая развитие современной оптоволоконной техники, позволяющей упростить процесс измерения и высокую точность получаемых результатов, следует отметить перспективность применения данного метода измерения износа режущего инструмента. Недостатком способа является высокая чувствительность к внешним условиям эксплуатации (запыленность воздуха, влияние СОЖ и т.д.), что является существенным препятствием для его внедрения в производственных условиях.
Рис. 8.4. Схема блока измерения износа инструмента
