- •Введение
- •1. Кинематика резания
- •1.1. Основные методы формообразования
- •1.2. Основные поверхности токарного резца и его геометрические параметры
- •1.3. Предпосылки выбора оптимальной геометрии инструмента
- •1.3.1 Назначение и выбор переднего угла
- •1.3.2. Назначение и выбор заднего угла
- •1.3.3. Выбор угла наклона главной режущей кромки
- •1.3.4 Выбор главного и вспомогательного углов в плане
- •1.3.5. Выбор радиуса при вершине резца
- •1.4. Основные движения при резании
- •Вопросы для самопроверки:
- •Основные движения при резании?
- •2. Схемы резания. Режимы резания. Геометрия срезаемого слоя
- •2.1. Классификация способов обработки резанием
- •2.2 Классификация схем резания
- •2.3. Параметры режима резания.
- •2.4 Параметры сечения срезаемого слоя
- •2.5. Порядок выбора и расчета параметров режима резания (на примере точения)
- •Вопросы для самопроверки:
- •3. Инструментальные материалы
- •3.1. Основные свойства инструментальных материалов
- •3.2. Виды инструментальных материалов и их классификация и область применения
- •3.2.1. Углеродистые и легированные инструментальные стали
- •3.2.2. Легированные инструментальные стали
- •3.2.3. Быстрорежущие инструментальные стали
- •3.2.4. Твердые сплавы
- •3.2.5. Минералокерамика
- •3.2.6. Сверхтвердые инструментальные материалы (стм)
- •3.2.7. Монокристаллические материалы
- •Вопросы для самопроверки:
- •4. Динамика резания
- •4.1. Схематизация процесса стружкообразования
- •3.2. Кинематические соотношения
- •4.3. Степень деформации при простом сдвиге
- •4.4. Определение степени деформации при резании
- •4.5. Нарост при резании
- •4.6 Силы резания. Технологические составляющие силы резания
- •4.7. Эмпирические формулы для расчета технологических составляющих силы резания.
- •4.8 Влияние глубины резания и подачи на составляющие силы резания
- •4.9 Физические составляющие силы резания
- •4.9. Работа резания
- •4.10 Вибрации при резании
- •Вопросы для самопроверки:
- •5. Термодинамика резания
- •5.1. Источники и распределение теплоты в зоне резания
- •5.2 Методы измерения температуры в зоне резания
- •Бесконтактный метод. Для измерения температуры применяются специальные приборы – пирометры, которые регистрируют тепловое излучение, исходящее от нагретого тела (рис.4.9).
- •5.4 Влияние различных факторов на температуру в зоне резания
- •Р ис.5.11 Влияние геометрии инструмента
- •Вопросы для самопроверки:
- •6. Износ и стойкость режущего инструмента
- •6.1 Виды износа режущего инструмента
- •От скорости резания:
- •6.2 Развитие очагов износа на контактных площадках режущего инструмента
- •Твёрдосплавного(а, в) и быстрорежущего(б, г) инструментов
- •6.3 Критерии износа режущего инструмента
- •Величины износа по задней поверхности
- •Поверхности от времени работы инструмента
- •6.4 Влияние различных факторов на износ и стойкость режущего инструмента
- •6.5 Скорость резания, допускаемая режущими свойствами режущего инструмента
- •6.7 Стойкость режущего инструмента
- •6.18. Зависимость стойкости инструмента от параметров режима резания
- •Вопросы для самопроверки:
- •7. Качество изделия
- •Вопросы для самопроверки:
- •8. Надежность резания
- •8.1 Диагностика как средство повышения надежности2
- •8.2 Проблема надежности режущего инструмента в условиях автоматизированного производства
- •8.3 Классификация методов контроля состояния режущего инструмента
- •С низкой отражательной способностью:
- •Pис. 8.5. Устройство для измерения радиального износа режущего инструмента:
- •Вопросы для самопроверки:
- •9. Управление резанием
- •9.1 Задачи и особенности управления процессом резания
- •9.2 Физические предпосылки управления процессом резания. Структурная модель процесса резания
- •9.3 Управление процессом стружкообразования3
- •Вопросы для самопроверки:
- •10. Роль внешней среды при резании металлов
- •10.1. Действия внешних сред в зоне резания
- •10.2. Проникновение внешней среды на поверхности контакта режущего инструмента с обрабатываемым материалом
- •10.3. Способы и техника применения технологических сред при резании металлов
- •10.4. Способы активации сож.
- •10.5. Нетрадиционные способы подачи сож в зону резания и новые технологические среды
- •11. Виды обработки резанием
- •11.1. Точение
- •11.2 Сверление, зенкерование, развертывание
- •11.3 Фрезерование
- •При фрезеровании.
- •11.4. Протягивание
- •11.5. Нарезание резьбы
- •11.6. Шлифование
- •11.6.1 Особенности процесса резания при шлифовании
- •11.6.2. Работа единичного зерна
- •11.6.3. Абразивные инструменты и их маркировка
- •11.6.4. Плоское и круглое шлифование
- •Литература
6.2 Развитие очагов износа на контактных площадках режущего инструмента
В зависимости от условий резания износ режущего инструмента может происходить: преимущественно по задней поверхности; преимущественно по передней поверхности; равномерно протекать как по передней, так и по задней поверхности.
Рис.6.4 Износ инструмента по задней поверхности
Износ режущего инструмента преимущественно по задней поверхности (рис.6.4) происходит при работе с малыми толщинами срезаемого слоя (а < 0,1 мм), особенно при обработке хрупких материалов. На задней поверхности инструмента образуется фаска износа h3. Очертания фаски износа в главной секущей плоскости (рис.6.4б) приблизительно копируют форму поверхности резания на заготовке.
Износ режущего инструмента преимущественно по передней поверхности происходит при работе с большими толщинами срезаемого слоя (а > 0,4 мм) на высоких скоростях резания, когда тепловой источник на передней поверхности значительно превышает тепловой источник на задней поверхности. Под действием сходящей стружки на передней поверхности образуется лунка износа шириной bл и глубиной hл (рис.6.5). Края лунки располагаются приблизительно параллельно главной режущей кромки инструмента, а длина лунки равна рабочей длине режущей кромки.
Равномерный износ инструмента происходит при его работе с толщинами срезаемого слоя 0,1 a 0,4мм. Особенно при обработке материалов, подвергающихся упрочнению.
Рассмотрим схемы износа твердосплавного и быстрорежущего инструмента (рис.6.6). Как видно из рис.6.6а, для инструмента из быстрорежущей стали между краем лунки и режущей кромкой имеется перемычка С. Наличие перемычки связано с наростом, предохраняющим часть передней поверхности от износа. По мере увеличения времени работы инструмента размер перемычки уменьшается и в какой-то момент времени прочность ее становится недостаточной и она «прорывается», что сопровождается резким увеличением износа инструмента по задней поверхности. Зависимость величины фаски износа быстрорежущего инструмента hз от времени его работы τ представлена на рис.5.6в. На данной зависимости можно выделить три участка: участок интенсивного износа или участок приработки – участок № 1, участок нормального износа – участок № 2 и участок катастрофического износа – участок № 3, вызванный "прорывом" перемычки.
Рис.6.5 Износ инструмента по передней поверхности
Твердосплавные инструменты работают на скоростях резания, при которых нарост не образуется. Поэтому при его износе край лунки сливается с режущей кромкой и перемычка отсутствует. При этом по мере работы инструмента происходит опускание вершины режущего клина инструмента (рис.6.6б). На кривой зависимости величины износа по задней поверхности от времени работы инструмента имеется только два участка – участок приработки и участок нормального износа (рис.6.6г).
Рис.6.6 Схема износа и зависимость износа от времени работы для
Твёрдосплавного(а, в) и быстрорежущего(б, г) инструментов
6.3 Критерии износа режущего инструмента
Выбрать критерий износа режущего инструмента – это значит определить время, когда его необходимо отдать на переточку. Используют два основных критерия износа: критерий оптимального износа и критерий технологического износа. В обоих критериях за основу принимают износ по задней поверхности, так как задняя поверхность инструмента изнашивается при любых условиях резания и измерение фаски износа hз значительно проще, чем глубины лунки износа по передней поверхности.
Критерий оптимального износа. Инструмент считается затупленным, когда величина износа по задней поверхности достигает значения, равного оптимальному износу. Под оптимальным износом понимается такой, при котором полный период стойкости режущего инструмента получается максимальным. Для определения оптимального износа строится зависимость полного периода стойкости ∑Т от изменения величины фаски износа (рис.6.7). Величина фаски износа по задней поверхности, при которой полный период стойкости будет максимален, и будет оптимальным износом.
Рис.6.7 Зависимость полного периода стойкости инструмента от
