- •Введение
- •1. Кинематика резания
- •1.1. Основные методы формообразования
- •1.2. Основные поверхности токарного резца и его геометрические параметры
- •1.3. Предпосылки выбора оптимальной геометрии инструмента
- •1.3.1 Назначение и выбор переднего угла
- •1.3.2. Назначение и выбор заднего угла
- •1.3.3. Выбор угла наклона главной режущей кромки
- •1.3.4 Выбор главного и вспомогательного углов в плане
- •1.3.5. Выбор радиуса при вершине резца
- •1.4. Основные движения при резании
- •Вопросы для самопроверки:
- •Основные движения при резании?
- •2. Схемы резания. Режимы резания. Геометрия срезаемого слоя
- •2.1. Классификация способов обработки резанием
- •2.2 Классификация схем резания
- •2.3. Параметры режима резания.
- •2.4 Параметры сечения срезаемого слоя
- •2.5. Порядок выбора и расчета параметров режима резания (на примере точения)
- •Вопросы для самопроверки:
- •3. Инструментальные материалы
- •3.1. Основные свойства инструментальных материалов
- •3.2. Виды инструментальных материалов и их классификация и область применения
- •3.2.1. Углеродистые и легированные инструментальные стали
- •3.2.2. Легированные инструментальные стали
- •3.2.3. Быстрорежущие инструментальные стали
- •3.2.4. Твердые сплавы
- •3.2.5. Минералокерамика
- •3.2.6. Сверхтвердые инструментальные материалы (стм)
- •3.2.7. Монокристаллические материалы
- •Вопросы для самопроверки:
- •4. Динамика резания
- •4.1. Схематизация процесса стружкообразования
- •3.2. Кинематические соотношения
- •4.3. Степень деформации при простом сдвиге
- •4.4. Определение степени деформации при резании
- •4.5. Нарост при резании
- •4.6 Силы резания. Технологические составляющие силы резания
- •4.7. Эмпирические формулы для расчета технологических составляющих силы резания.
- •4.8 Влияние глубины резания и подачи на составляющие силы резания
- •4.9 Физические составляющие силы резания
- •4.9. Работа резания
- •4.10 Вибрации при резании
- •Вопросы для самопроверки:
- •5. Термодинамика резания
- •5.1. Источники и распределение теплоты в зоне резания
- •5.2 Методы измерения температуры в зоне резания
- •Бесконтактный метод. Для измерения температуры применяются специальные приборы – пирометры, которые регистрируют тепловое излучение, исходящее от нагретого тела (рис.4.9).
- •5.4 Влияние различных факторов на температуру в зоне резания
- •Р ис.5.11 Влияние геометрии инструмента
- •Вопросы для самопроверки:
- •6. Износ и стойкость режущего инструмента
- •6.1 Виды износа режущего инструмента
- •От скорости резания:
- •6.2 Развитие очагов износа на контактных площадках режущего инструмента
- •Твёрдосплавного(а, в) и быстрорежущего(б, г) инструментов
- •6.3 Критерии износа режущего инструмента
- •Величины износа по задней поверхности
- •Поверхности от времени работы инструмента
- •6.4 Влияние различных факторов на износ и стойкость режущего инструмента
- •6.5 Скорость резания, допускаемая режущими свойствами режущего инструмента
- •6.7 Стойкость режущего инструмента
- •6.18. Зависимость стойкости инструмента от параметров режима резания
- •Вопросы для самопроверки:
- •7. Качество изделия
- •Вопросы для самопроверки:
- •8. Надежность резания
- •8.1 Диагностика как средство повышения надежности2
- •8.2 Проблема надежности режущего инструмента в условиях автоматизированного производства
- •8.3 Классификация методов контроля состояния режущего инструмента
- •С низкой отражательной способностью:
- •Pис. 8.5. Устройство для измерения радиального износа режущего инструмента:
- •Вопросы для самопроверки:
- •9. Управление резанием
- •9.1 Задачи и особенности управления процессом резания
- •9.2 Физические предпосылки управления процессом резания. Структурная модель процесса резания
- •9.3 Управление процессом стружкообразования3
- •Вопросы для самопроверки:
- •10. Роль внешней среды при резании металлов
- •10.1. Действия внешних сред в зоне резания
- •10.2. Проникновение внешней среды на поверхности контакта режущего инструмента с обрабатываемым материалом
- •10.3. Способы и техника применения технологических сред при резании металлов
- •10.4. Способы активации сож.
- •10.5. Нетрадиционные способы подачи сож в зону резания и новые технологические среды
- •11. Виды обработки резанием
- •11.1. Точение
- •11.2 Сверление, зенкерование, развертывание
- •11.3 Фрезерование
- •При фрезеровании.
- •11.4. Протягивание
- •11.5. Нарезание резьбы
- •11.6. Шлифование
- •11.6.1 Особенности процесса резания при шлифовании
- •11.6.2. Работа единичного зерна
- •11.6.3. Абразивные инструменты и их маркировка
- •11.6.4. Плоское и круглое шлифование
- •Литература
4.10 Вибрации при резании
В процессе резания в технологической системе (станок – приспособление–инструмент–заготовка) могут возникать колебания, называемые вибрациями.
Практика показала, что при различных условиях обработки в технологической системе могут появляться колебания различной частоты. Чаще всего заготовка имеет низкочастотные колебания, а инструмент – высокочастотные. Наличие вибраций снижает качество обработанной поверхности и период стойкости инструмента.
В процессе резания возникает несколько видов колебаний – свободные, вынужденные, параметрические, релаксационные и автоколебания.
Свободные (собственные) колебания – это такие колебания, которые возникают вследствие начального отклонения тела от наложения равновесия, а затем поддерживаются силами упругости системы. Наличие сил сопротивления приводит к затуханию свободных колебаний.
Вынужденные колебания – это колебания, которые вызываются переменным внешним воздействием. Например, при обтачивании заготовки с эксцентриситетом.
При резании наблюдаются следующие виды возмущающих сил:
Периодическое возмущение от соседних станков, цехового транспорта, передаваемое на данный станок через грунт. Частота этого возмущения невелика – до нескольких десятков герц.
Центробежная сила от вращающихся неуравновешенных масс станка (патроны, шкивы и др.). В этом случае частота возмущения в герцах равна частоте вращения в секундах (об/с); f = n, c-1.
Возбуждение от прерывистого характера процесса резания при применении многозубого режущего инструмента (например, при фрезеровании f = n·z, где z – число зубьев фрезы).
Возбуждение колебаний при снятии переменного припуска. Это приводит к переменности силы резания (например, при обтачивании заготовки с эксцентриситетом f = n, c-1).
Возбуждение колебаний от переменных сил, возникающих в зубчатых передачах привода станка, а также в зубчатых подшипниках качения узлов станка.
В зубчатых передачах колебания возникают в связи с периодическим изменением числа зубьев, передающих крутящий момент, а также из-за погрешностей окружных шагов зубьев колес.
Подшипниковые вибрации возникают в результате некруглости и разноразмерности тел качения (шариков, роликов), погрешностей сборки подшипникового узла, а также из-за загрязнения смазки и износа тел качения.
Параметрические колебания – такие колебания, которые происходят за счет изменения параметра (параметров) системы во времени. Например, жесткости при шлифовании вала со шпоночной канавкой.
Релаксационные (прерывистые) колебания возникают при медленных перемещениях узлов станочной системы. Релаксационные колебания приводят к неустойчивому, скачкообразному перемещению узлов станка, вызывают значительные динамические нагрузки на режущий инструмент и приводят к погрешности обработки.
Автоколебания (самовозбуждающиеся) – это такие колебания, в которых потери энергии пополняются за счет периодического притока энергии от источника, не обладающего колебательными свойствами. При резании в автоколебательную систему энергия поступает от двигателя главного движения. Причем поступление энергии в систему управляется самим движением, а период колебаний и амплитуда не зависят от начальных условий.
При резании в общем случае возможен процесс смешанного характера, представляющий собой результат положения свободных, вынужденных, параметрических колебаний и автоколебаний. Их можно выявить с помощью спектрального анализа.
Для борьбы с вибрациями необходимо:
повышать виброустойчивость и динамические характеристики металлорежущих станков. Особенно важной является эта проблема для станков с ЧПУ, т.к. возникновение колебаний, особенно релаксационных, нарушает взаимодействие управляющего исполнительного сигналов, нарушает структурный принцип ЧПУ и является недопустимым;
разрабатывать применительно к конкретным технологическим операциям специальные виброгасящие устройства различных принципов действия (ударного, фрикционного, гидравлического, и др.). Применение виброгасителей существенно снижает интенсивность автоколебаний при точении, растачивании, развертывании и фрезеровании;
разрабатывать виброустойчивые конструкции режущего инструмента и оснастки, выбирать виброустойчивые диапазоны режимов резания;
исследовать и разрабатывать методы и средства управления уровнем интенсивности автоколебаний для снижения износа режущего инструмента и повышения производительности, точности и качества обработки;
контролировать техническое состояние оборудования.
