- •Введение
- •1. Кинематика резания
- •1.1. Основные методы формообразования
- •1.2. Основные поверхности токарного резца и его геометрические параметры
- •1.3. Предпосылки выбора оптимальной геометрии инструмента
- •1.3.1 Назначение и выбор переднего угла
- •1.3.2. Назначение и выбор заднего угла
- •1.3.3. Выбор угла наклона главной режущей кромки
- •1.3.4 Выбор главного и вспомогательного углов в плане
- •1.3.5. Выбор радиуса при вершине резца
- •1.4. Основные движения при резании
- •Вопросы для самопроверки:
- •Основные движения при резании?
- •2. Схемы резания. Режимы резания. Геометрия срезаемого слоя
- •2.1. Классификация способов обработки резанием
- •2.2 Классификация схем резания
- •2.3. Параметры режима резания.
- •2.4 Параметры сечения срезаемого слоя
- •2.5. Порядок выбора и расчета параметров режима резания (на примере точения)
- •Вопросы для самопроверки:
- •3. Инструментальные материалы
- •3.1. Основные свойства инструментальных материалов
- •3.2. Виды инструментальных материалов и их классификация и область применения
- •3.2.1. Углеродистые и легированные инструментальные стали
- •3.2.2. Легированные инструментальные стали
- •3.2.3. Быстрорежущие инструментальные стали
- •3.2.4. Твердые сплавы
- •3.2.5. Минералокерамика
- •3.2.6. Сверхтвердые инструментальные материалы (стм)
- •3.2.7. Монокристаллические материалы
- •Вопросы для самопроверки:
- •4. Динамика резания
- •4.1. Схематизация процесса стружкообразования
- •3.2. Кинематические соотношения
- •4.3. Степень деформации при простом сдвиге
- •4.4. Определение степени деформации при резании
- •4.5. Нарост при резании
- •4.6 Силы резания. Технологические составляющие силы резания
- •4.7. Эмпирические формулы для расчета технологических составляющих силы резания.
- •4.8 Влияние глубины резания и подачи на составляющие силы резания
- •4.9 Физические составляющие силы резания
- •4.9. Работа резания
- •4.10 Вибрации при резании
- •Вопросы для самопроверки:
- •5. Термодинамика резания
- •5.1. Источники и распределение теплоты в зоне резания
- •5.2 Методы измерения температуры в зоне резания
- •Бесконтактный метод. Для измерения температуры применяются специальные приборы – пирометры, которые регистрируют тепловое излучение, исходящее от нагретого тела (рис.4.9).
- •5.4 Влияние различных факторов на температуру в зоне резания
- •Р ис.5.11 Влияние геометрии инструмента
- •Вопросы для самопроверки:
- •6. Износ и стойкость режущего инструмента
- •6.1 Виды износа режущего инструмента
- •От скорости резания:
- •6.2 Развитие очагов износа на контактных площадках режущего инструмента
- •Твёрдосплавного(а, в) и быстрорежущего(б, г) инструментов
- •6.3 Критерии износа режущего инструмента
- •Величины износа по задней поверхности
- •Поверхности от времени работы инструмента
- •6.4 Влияние различных факторов на износ и стойкость режущего инструмента
- •6.5 Скорость резания, допускаемая режущими свойствами режущего инструмента
- •6.7 Стойкость режущего инструмента
- •6.18. Зависимость стойкости инструмента от параметров режима резания
- •Вопросы для самопроверки:
- •7. Качество изделия
- •Вопросы для самопроверки:
- •8. Надежность резания
- •8.1 Диагностика как средство повышения надежности2
- •8.2 Проблема надежности режущего инструмента в условиях автоматизированного производства
- •8.3 Классификация методов контроля состояния режущего инструмента
- •С низкой отражательной способностью:
- •Pис. 8.5. Устройство для измерения радиального износа режущего инструмента:
- •Вопросы для самопроверки:
- •9. Управление резанием
- •9.1 Задачи и особенности управления процессом резания
- •9.2 Физические предпосылки управления процессом резания. Структурная модель процесса резания
- •9.3 Управление процессом стружкообразования3
- •Вопросы для самопроверки:
- •10. Роль внешней среды при резании металлов
- •10.1. Действия внешних сред в зоне резания
- •10.2. Проникновение внешней среды на поверхности контакта режущего инструмента с обрабатываемым материалом
- •10.3. Способы и техника применения технологических сред при резании металлов
- •10.4. Способы активации сож.
- •10.5. Нетрадиционные способы подачи сож в зону резания и новые технологические среды
- •11. Виды обработки резанием
- •11.1. Точение
- •11.2 Сверление, зенкерование, развертывание
- •11.3 Фрезерование
- •При фрезеровании.
- •11.4. Протягивание
- •11.5. Нарезание резьбы
- •11.6. Шлифование
- •11.6.1 Особенности процесса резания при шлифовании
- •11.6.2. Работа единичного зерна
- •11.6.3. Абразивные инструменты и их маркировка
- •11.6.4. Плоское и круглое шлифование
- •Литература
4.6 Силы резания. Технологические составляющие силы резания
Силы резания используются для расчета режущего инструмента и узлов металлорежущего станка на прочность и жесткость, а также для расчета точности и виброустойчивости обработки и мощность, затрачиваемой на резание.
Технологическими составляющими силы резания называют ее проекции на технологические оси x, y, z:
ось x направлена вдоль подачи S;
ось y перпендикулярна к обработанной поверхности;
ось z совпадает с вектором V скорости главного движения (рис. 4.8).
а б
Рис. 4.8. а – технологические оси; б – схема составляющих силы резания
На рисунке 4.8 показаны составляющие силы резания, действующие на резец. Равные им, но противоположно направленные составляющие действуют на заготовку.
В плоскости, проходящей через оси ν и z расположена суммарная равнодействующая сила резания P. Точка O – точка приложения этой силы.
Проекцию
силы P
на оси x,
y,
z,
υ
обозначают соответственно Px,
Py,
Pz,
Pυ.
Сила – есть вектор (
).
Вектор определяется модулем (P)
и направлением.
Из рисунка 4.8 следует:
(4.14)
(4.15)
Силу Px называют силой подачи. Она используется при проектировании механизма подачи станка.
Силу Py называют радиальной силой. Она деформирует заготовку; оказывает большое влияние на точность и виброустойчивость обработки.
Силу Pz, вертикальную составляющую силы резания, часто называют главной составляющей силы резания. Эта сила вместе со скоростью резания определяет мощность резания (эффективную мощность), а вместе с диаметром заготовки – крутящий момент на валу шпинделя станка.
(4.16)
где Pz измеряется в H, V – в м/мин, Nэ – в кВт, D – в мм, Мкр – в Н·м.
При прямых срезах (t > S) имеют место следующие средние соотношения между составляющими силы резания:
(4.17)
Подставляя (3.17) в (3.15), получим
P = 1,08 Pz, или P Pz . (4.18)
Таким образом, сила Pz по модулю практически равна равнодействующей силе P. Поэтому силу Pz называют главной составляющей силы резания.
4.7. Эмпирические формулы для расчета технологических составляющих силы резания.
Зависимость технологических составляющих силы резания от глубины резания и подачи принято выражать степенными формулами:
(4.19)
где K1, K2, K3... – поправочные коэффициенты на силы Pz, Py, Px, учитывающие влияние всех других факторов, кроме глубины резания t и подачи S.
Значения cp, xp,yp приводятся в нормативах по режимам резания.
При увеличении глубины резания и подачи растет площадь срезаемого слоя, что вызывает увеличение всех составляющих сил резания Pz, Py, Px.
Установлено, что при прямых срезах (t > S) при точении различных конструкционных материалов глубины резания t влияет на составляющие силы резания в большей степени, чем подача S. В формулах (3.19) хp > уp. Например, при точении конструкционных материалов при t > S частные зависимости составляющих силы резания от t и S имеют следующий вид:
(4.20)
