- •Введение
- •1. Кинематика резания
- •1.1. Основные методы формообразования
- •1.2. Основные поверхности токарного резца и его геометрические параметры
- •1.3. Предпосылки выбора оптимальной геометрии инструмента
- •1.3.1 Назначение и выбор переднего угла
- •1.3.2. Назначение и выбор заднего угла
- •1.3.3. Выбор угла наклона главной режущей кромки
- •1.3.4 Выбор главного и вспомогательного углов в плане
- •1.3.5. Выбор радиуса при вершине резца
- •1.4. Основные движения при резании
- •Вопросы для самопроверки:
- •Основные движения при резании?
- •2. Схемы резания. Режимы резания. Геометрия срезаемого слоя
- •2.1. Классификация способов обработки резанием
- •2.2 Классификация схем резания
- •2.3. Параметры режима резания.
- •2.4 Параметры сечения срезаемого слоя
- •2.5. Порядок выбора и расчета параметров режима резания (на примере точения)
- •Вопросы для самопроверки:
- •3. Инструментальные материалы
- •3.1. Основные свойства инструментальных материалов
- •3.2. Виды инструментальных материалов и их классификация и область применения
- •3.2.1. Углеродистые и легированные инструментальные стали
- •3.2.2. Легированные инструментальные стали
- •3.2.3. Быстрорежущие инструментальные стали
- •3.2.4. Твердые сплавы
- •3.2.5. Минералокерамика
- •3.2.6. Сверхтвердые инструментальные материалы (стм)
- •3.2.7. Монокристаллические материалы
- •Вопросы для самопроверки:
- •4. Динамика резания
- •4.1. Схематизация процесса стружкообразования
- •3.2. Кинематические соотношения
- •4.3. Степень деформации при простом сдвиге
- •4.4. Определение степени деформации при резании
- •4.5. Нарост при резании
- •4.6 Силы резания. Технологические составляющие силы резания
- •4.7. Эмпирические формулы для расчета технологических составляющих силы резания.
- •4.8 Влияние глубины резания и подачи на составляющие силы резания
- •4.9 Физические составляющие силы резания
- •4.9. Работа резания
- •4.10 Вибрации при резании
- •Вопросы для самопроверки:
- •5. Термодинамика резания
- •5.1. Источники и распределение теплоты в зоне резания
- •5.2 Методы измерения температуры в зоне резания
- •Бесконтактный метод. Для измерения температуры применяются специальные приборы – пирометры, которые регистрируют тепловое излучение, исходящее от нагретого тела (рис.4.9).
- •5.4 Влияние различных факторов на температуру в зоне резания
- •Р ис.5.11 Влияние геометрии инструмента
- •Вопросы для самопроверки:
- •6. Износ и стойкость режущего инструмента
- •6.1 Виды износа режущего инструмента
- •От скорости резания:
- •6.2 Развитие очагов износа на контактных площадках режущего инструмента
- •Твёрдосплавного(а, в) и быстрорежущего(б, г) инструментов
- •6.3 Критерии износа режущего инструмента
- •Величины износа по задней поверхности
- •Поверхности от времени работы инструмента
- •6.4 Влияние различных факторов на износ и стойкость режущего инструмента
- •6.5 Скорость резания, допускаемая режущими свойствами режущего инструмента
- •6.7 Стойкость режущего инструмента
- •6.18. Зависимость стойкости инструмента от параметров режима резания
- •Вопросы для самопроверки:
- •7. Качество изделия
- •Вопросы для самопроверки:
- •8. Надежность резания
- •8.1 Диагностика как средство повышения надежности2
- •8.2 Проблема надежности режущего инструмента в условиях автоматизированного производства
- •8.3 Классификация методов контроля состояния режущего инструмента
- •С низкой отражательной способностью:
- •Pис. 8.5. Устройство для измерения радиального износа режущего инструмента:
- •Вопросы для самопроверки:
- •9. Управление резанием
- •9.1 Задачи и особенности управления процессом резания
- •9.2 Физические предпосылки управления процессом резания. Структурная модель процесса резания
- •9.3 Управление процессом стружкообразования3
- •Вопросы для самопроверки:
- •10. Роль внешней среды при резании металлов
- •10.1. Действия внешних сред в зоне резания
- •10.2. Проникновение внешней среды на поверхности контакта режущего инструмента с обрабатываемым материалом
- •10.3. Способы и техника применения технологических сред при резании металлов
- •10.4. Способы активации сож.
- •10.5. Нетрадиционные способы подачи сож в зону резания и новые технологические среды
- •11. Виды обработки резанием
- •11.1. Точение
- •11.2 Сверление, зенкерование, развертывание
- •11.3 Фрезерование
- •При фрезеровании.
- •11.4. Протягивание
- •11.5. Нарезание резьбы
- •11.6. Шлифование
- •11.6.1 Особенности процесса резания при шлифовании
- •11.6.2. Работа единичного зерна
- •11.6.3. Абразивные инструменты и их маркировка
- •11.6.4. Плоское и круглое шлифование
- •Литература
4.4. Определение степени деформации при резании
Представим зону деформации ограниченной двумя прямыми параллельными линиями [2] (рис. 4.4).
Ширина зоны деформации равна ∆y, т.е. стороне элементарного квадрата. Вершина квадрата (точка А) находится на пересечении обрабатываемой поверхности с верхней границей зоны деформации. После деформации квадрата точка А перемещается на свободную поверхность стружки в точку А'. Расстояние между точками А и А' равно абсолютному сдвигу ∆x. Запишем выражение для относительного сдвига (см. 4.6):
Выразим ∆x и ∆y через скорость сдвига V2 и скорость Vy, перпендикулярную плоскости сдвига. Для этого разделим числитель и знаменатель выражения (6.6) на ∆t – время, в течение которого частица металла проходит через зону деформации.
Рис. 4.4. Схема простого сдвига при резании: β – угол наклона плоскости сдвига
Получим
.
(4.9)
Из рисунка 4.4 имеем:
(4.10)
Подставив (4.5) и (4.10) в выражение (4.9), получим
(4.11)
Кроме формулы (4.11) для расчета относительного сдвига могут быть использованы другие формулы, тождественные (4.11):
(4.12)
(4.13)
4.5. Нарост при резании
При резании широкой номенклатуры конструкционных материалов при определенных условиях (режимах резания) на передней поверхности инструмента образуется нарост [2] (рис. 4.5).
В сечении главной секущей плоскостью нарост имеет форму клина. Нарост состоит из частиц обрабатываемого материала. Твердость нароста в 2,5…3,5 раза выше твердости обрабатываемого материала. Поэтому он выполняет роль режущего инструмента, изменяя действительный передний угол γд (γд > γ). Нарост всегда увеличивает передний угол инструмента.
Рис. 4.5. Схема образования нароста
В связи с этим нарост оказывает существенное влияние на процесс деформации, силу и температуру резания.
Нарост может выступать за режущую кромку (∆a – приращение толщины среза), изменяя тем самым размеры обработанной поверхности.
Важнейшей особенностью нароста является его способность разрушаться и вновь образовываться, вызывающая колебания технологической системы.
При этом часть нароста уносится со стружкой, а другая его часть остается на обработанной поверхности детали, увеличивая тем самым шероховатость поверхности.
В тех случаях, когда нарост становится достаточно устойчив, он способен защищать заднюю и переднюю поверхности инструмента от износа.
Установлено, что при малых температурах резания нарост не образуется. Это связано с тем, что при малых температурах резания (что имеет место при малых скоростях резания) недостаточно велики силы молекулярного прилипания (адгезии), удерживающие основание нароста на передней поверхности инструмента.
С увеличением температуры резания условия молекулярного прилипания улучшаются.
Заторможенный на передней поверхности слой принимает форму клина, ибо только в такой форме нарост способен резать обрабатываемый материал.
Так как температура резания еще не слишком велика, нарост способен упрочняться, принимать большие размеры и большие передние углы γυ.
Однако нарост больших размеров очень неустойчив. Он быстро разрушается и возникает вновь. При этих условиях он оказывает особенно сильное влияние на шероховатость поверхности.
Таким образом, с увеличением температуры резания действительный передний угол γυ увеличивается. Увеличение γд наблюдается лишь до некоторой температуры резания. Для конструкционных сталей эта температура равна примерно 300 ºС. При θ > 300 ºС нарост разупрочняется, и с повышением θ высота нароста уменьшается, вместе с тем уменьшается и γд (рис. 4.6).
Рис. 4.6. Схема влияния температуры резания θ на высоту нароста H и действительный передний угол γд
При θ = θ3 = 600º нарост исчезает и при более высоких температурах действительный передний угол равен статическому (γд = γ).
С учетом явления наростообразования зависимости коэффициента усадки стружки и сил резания от скорости резания выражаются типичными горбооразными кривыми (рис. 4.7).
Рис. 4.7 Схема влияния скорости резания V на коэффициент усадки стружки K и силу резания P
Причем скорости V1 соответствует температура θ = 80…100 ºС, скорости V2 – температура θ2 = 300 ºС, а скорости V3 – температура θ3 = 600 ºС.
При обработке таких материалов, как медь, латунь, бронза, олово, закаленные стали, большинство титановых сплавов, белый чугун, стали с большим содержанием хрома и никеля нарост не образуется.
Меры борьбы с наростом. Уменьшение высоты нароста и его влияние на шероховатость и точность обработки достигается за счет:
уменьшения толщины срезаемого слоя и увеличения переднего угла;
применения смазочно-охлаждающих жидкостей;
выбора режимов резания, при которых температура резания θ > 600 ºС.
предварительного нагрева или охлаждения заготовки.
