- •Введение
- •1. Кинематика резания
- •1.1. Основные методы формообразования
- •1.2. Основные поверхности токарного резца и его геометрические параметры
- •1.3. Предпосылки выбора оптимальной геометрии инструмента
- •1.3.1 Назначение и выбор переднего угла
- •1.3.2. Назначение и выбор заднего угла
- •1.3.3. Выбор угла наклона главной режущей кромки
- •1.3.4 Выбор главного и вспомогательного углов в плане
- •1.3.5. Выбор радиуса при вершине резца
- •1.4. Основные движения при резании
- •Вопросы для самопроверки:
- •Основные движения при резании?
- •2. Схемы резания. Режимы резания. Геометрия срезаемого слоя
- •2.1. Классификация способов обработки резанием
- •2.2 Классификация схем резания
- •2.3. Параметры режима резания.
- •2.4 Параметры сечения срезаемого слоя
- •2.5. Порядок выбора и расчета параметров режима резания (на примере точения)
- •Вопросы для самопроверки:
- •3. Инструментальные материалы
- •3.1. Основные свойства инструментальных материалов
- •3.2. Виды инструментальных материалов и их классификация и область применения
- •3.2.1. Углеродистые и легированные инструментальные стали
- •3.2.2. Легированные инструментальные стали
- •3.2.3. Быстрорежущие инструментальные стали
- •3.2.4. Твердые сплавы
- •3.2.5. Минералокерамика
- •3.2.6. Сверхтвердые инструментальные материалы (стм)
- •3.2.7. Монокристаллические материалы
- •Вопросы для самопроверки:
- •4. Динамика резания
- •4.1. Схематизация процесса стружкообразования
- •3.2. Кинематические соотношения
- •4.3. Степень деформации при простом сдвиге
- •4.4. Определение степени деформации при резании
- •4.5. Нарост при резании
- •4.6 Силы резания. Технологические составляющие силы резания
- •4.7. Эмпирические формулы для расчета технологических составляющих силы резания.
- •4.8 Влияние глубины резания и подачи на составляющие силы резания
- •4.9 Физические составляющие силы резания
- •4.9. Работа резания
- •4.10 Вибрации при резании
- •Вопросы для самопроверки:
- •5. Термодинамика резания
- •5.1. Источники и распределение теплоты в зоне резания
- •5.2 Методы измерения температуры в зоне резания
- •Бесконтактный метод. Для измерения температуры применяются специальные приборы – пирометры, которые регистрируют тепловое излучение, исходящее от нагретого тела (рис.4.9).
- •5.4 Влияние различных факторов на температуру в зоне резания
- •Р ис.5.11 Влияние геометрии инструмента
- •Вопросы для самопроверки:
- •6. Износ и стойкость режущего инструмента
- •6.1 Виды износа режущего инструмента
- •От скорости резания:
- •6.2 Развитие очагов износа на контактных площадках режущего инструмента
- •Твёрдосплавного(а, в) и быстрорежущего(б, г) инструментов
- •6.3 Критерии износа режущего инструмента
- •Величины износа по задней поверхности
- •Поверхности от времени работы инструмента
- •6.4 Влияние различных факторов на износ и стойкость режущего инструмента
- •6.5 Скорость резания, допускаемая режущими свойствами режущего инструмента
- •6.7 Стойкость режущего инструмента
- •6.18. Зависимость стойкости инструмента от параметров режима резания
- •Вопросы для самопроверки:
- •7. Качество изделия
- •Вопросы для самопроверки:
- •8. Надежность резания
- •8.1 Диагностика как средство повышения надежности2
- •8.2 Проблема надежности режущего инструмента в условиях автоматизированного производства
- •8.3 Классификация методов контроля состояния режущего инструмента
- •С низкой отражательной способностью:
- •Pис. 8.5. Устройство для измерения радиального износа режущего инструмента:
- •Вопросы для самопроверки:
- •9. Управление резанием
- •9.1 Задачи и особенности управления процессом резания
- •9.2 Физические предпосылки управления процессом резания. Структурная модель процесса резания
- •9.3 Управление процессом стружкообразования3
- •Вопросы для самопроверки:
- •10. Роль внешней среды при резании металлов
- •10.1. Действия внешних сред в зоне резания
- •10.2. Проникновение внешней среды на поверхности контакта режущего инструмента с обрабатываемым материалом
- •10.3. Способы и техника применения технологических сред при резании металлов
- •10.4. Способы активации сож.
- •10.5. Нетрадиционные способы подачи сож в зону резания и новые технологические среды
- •11. Виды обработки резанием
- •11.1. Точение
- •11.2 Сверление, зенкерование, развертывание
- •11.3 Фрезерование
- •При фрезеровании.
- •11.4. Протягивание
- •11.5. Нарезание резьбы
- •11.6. Шлифование
- •11.6.1 Особенности процесса резания при шлифовании
- •11.6.2. Работа единичного зерна
- •11.6.3. Абразивные инструменты и их маркировка
- •11.6.4. Плоское и круглое шлифование
- •Литература
3.2.6. Сверхтвердые инструментальные материалы (стм)
Одним из направлений совершенствования режущих свойств инструментов, позволяющим повысить производительность труда при механической обработке, является повышение твердости и теплостойкости инструментальных материалов. Наиболее перспективными в этом отношении являются синтетические сверхтвердые материалы на основе алмаза или нитрида бора.
Алмазы и алмазные инструменты широко используются при обработке деталей из различных материалов. Для алмазов характерны исключительно высокая твердость и износостойкость. По абсолютной твердости алмаз в 4…5 раз тверже твердых сплавов и в десятки и сотни раз превышает износостойкость других инструментальных материалов при обработке цветных сплавов и пластмасс. Кроме того, вследствие высокой теплопроводности алмазы лучше отводят теплоту из зоны резания, что способствует гарантированному получению деталей с бесприжоговой поверхностью. Однако алмазы весьма хрупки, что сильно сужает область их применения.
Для изготовления режущих инструментов основное применение получили искусственные алмазы, которые по своим свойствам близки к естественным. При больших давлениях и температурах в искусственных алмазах удается получить такое же расположение атомов углерода, как и в естественных. Масса одного искусственного алмаза обычно составляет 1/8…1/10 карата (1 карат — 0,2 г). Вследствие малости размеров искусственных кристаллов они непригодны для изготовления таких инструментов, как сверла, резцы и другие, а поэтому применяются при изготовлении порошков для алмазных шлифовальных кругов и притирочных паст.
Лезвийные алмазные инструменты выпускаются на основе поликристаллических материалов типа «карбонадо» или «баллас». Эти инструменты имеют длительные размерные периоды стойкости и обеспечивают высокое качество обработанной поверхности. Применяются они при обработке титановых, высококремнистых алюминиевых сплавов, стеклопластиков и пластмасс, твердых сплавов и других материалов.
Алмаз как инструментальный материал имеет существенный недостаток — при повышенной температуре он вступает в химическую реакцию с железом и теряет работоспособность. Для того чтобы обрабатывать стали, чугуны и другие материалы на основе железа, были созданы сверхтвердые материалы, химически инертные к нему. Такие материалы получены по технологии, близкой к технологии получения алмазов, но в качестве исходного вещества используется не графит, а нитрид бора.
Поликристаллы плотных модификаций нитрида бора превосходят по теплостойкости все материалы, применяемые для лезвийного инструмента: алмаз в 1,9 раза, быстрорежущую сталь в 2,3 раза, твердый сплав в 1,7 раза, минералокерамику в 1,2 раза .
Эти материалы изотропны (одинаковая прочность в различных направлениях), обладают микротвердостью меньшей, но близкой к твердости алмаза, повышенной теплостойкостью, высокой теплопроводностью и химической инертностью по отношению к углероду и железу.
Характеристики отдельных из рассматриваемых материалов, которые в настоящее время получили название «композит», приведены в табл. 3.12.
Эффективность применения лезвийных инструментов из различных марок композитов связана с совершенствованием конструкции инструментов и технологии их изготовления и с определением рациональной области их использования: композиты 01 (эльбор-Р) и 02 (белбор) используют для тонкого и чистового точения и фрезерования без ударов деталей из закаленных сталей твердостью 55...70 НRСэ, чугунов и твердых сплавов ВК15, ВК20 и ВК25 с подачами до 0,20 мм/об и глубиной резания до 0,8 мм; композит 05 применяют для чистового и получистового точения без ударов деталей из закаленных сталей твердостью 40...58 НRСэ, чугунов твердостью до 300 НВ с подачами до 0,25 мм/об и глубиной до 2.5 мм; композит 10 (гексанит-Р) используют для тонкого, чистового и получистового точения и фрезерования с ударами деталей из закаленных сталей твердостью не выше 58 HRCЭ, чугунов любой твердости, сплавов ВК15, ВК20, ВК25 с подачей до 0,15 мм/об и глубиной резания до 0,6 мм. При этом период стойкости инструментов возрастает в десятки раз по сравнению с другими инструментальными материалами.
Таблица 3.12. Основные физико-механические характеристики СТМ
на основе плотных модификаций нитрида бора
Материал |
Твердость, ГПа |
|
Коэффициенты |
Е, ГПа |
|
|
||
К1С, МПа/м1/2 |
|
а* |
||||||
Композит 01 (эльбор-Р) |
35…37 |
- |
3,9…4,2 |
0,16 |
- |
840 |
3,4 |
60…80 (при 350…360К) |
Композит 02 (бельбор) |
- |
700 |
- |
- |
- |
720 |
3,5 |
160…180 (при 900…950 К) |
Композит 05-ИТ |
19 |
470 |
4,6…6,7 |
|
- |
620 |
4,0 4,3 |
|
Композит 10 (гексанит-Р) |
30,5…38,5 |
1000…1500 |
3,8…5,9 8,2 |
0,14…0,16 |
- |
715 880 |
3,28 3,2…3,4 |
25-30 (при 360 К) |
Киборит |
38…42 |
- |
|
0,16 |
- |
|
|
40…60 (при 950 К) 100 |
Боразон |
45 |
- |
- |
- |
5,6 |
- |
3,48 |
100…135 |
Амборит |
40 |
570 |
6,3 |
- |
4,9 |
680 |
- |
100 |
Сумиборон |
30…35 |
- |
- |
- |
4,7…5,6 |
- |
4,2 |
37,8 |
Вюрцин |
30…40 |
800 |
13,0 |
- |
7,9 |
- |
- |
20 (при 673 К) |
Область применения СТМ до недавнего времени ограничивалась из-за сравнительно небольших размеров поликристаллов. В настоящее время освоен выпуск двухслойных неперетачиваемых пластин, состоящих из твердого сплава (основа) и слоя из поликристаллов алмаза или нитрида бора толщиной до 0,5 мм, что повысит общую эффективность использования инструментов из сверхтвердых материалов.
Таблица 3.13. Скорости резания, рекомендуемые для инструмента из СТМ
СТМ |
Обрабатываемый материал |
Скорость резания, м/мин |
|
Точение |
Фрезерование |
||
1 |
2 |
3 |
4 |
ПКНБ |
Конструкционные и инструментальные стали, термически не обработанные (HRC<30) |
- |
400…900 |
Закаленные стали (НRC 35-55) Закаленные стали (HRC 55-70) |
50…200 40…120 |
200…400 80…300 |
|
Серые и высокопрочные чугуны (HB 150-300) |
300…1000 |
600…3000 |
|
Отбеленные и закаленные чугуны (НВ 400-650) |
40…200 |
150…800 |
|
ПКА |
Алюминий и алюминиевые сплавы |
600…3000 |
600м6000 |
Алюминиево-кремниевые сплавы (Si<20%) |
500…1500 |
500…2500 |
|
Медь и медные сплавы |
300…1000 |
300…2000 |
|
Композиционные неметаллические материалы и пластмассы |
200…1000 |
200…2000 |
|
Древесностружечные материалы |
- |
2000…4000 |
|
Спеченные WC-Co твердые сплавы |
15…30 |
15…45 |
|
