- •Термины, условные обозначения и единицы измерения
- •Термодинамика металлических расплавов
- •1. Парциальные и интегральные термодинамические величины
- •Парциальная и относительная парциальная нSi энтальпии кремния в жидком железе
- •2. Избыточные термодинамические величины
- •3. Активность и коэффициент активности для различных стандартных состояний
- •Коэффициенты активности титана в расплавах Ni–Ti при 1800 к
- •4. Переход от одного стандартного состояния к другому
- •5. Активность углерода в расплавах Fe–c
- •6. Активность кислорода в жидком железе
- •Зависимость отношения от концентрации и температуры
- •7. Коэффициенты активности хрома в расплавах Fе–Сr
- •8. Активность кислорода в жидкой стали
- •Величина э.Д.С. Кислородного концентрационного элемента и активность кислорода в жидкой стали 08 кп
- •9. Расчет коэффициентов активности компонентов бинарного раствора с помощью уравнения Гиббса – Дюгема
- •Результаты расчета коэффициентов активности железа в расплавах Fе–а1 при 1873 к с помощью уравнения Гиббса – Дюгема
- •10. Расчет стандартной энергии Гиббса и константы равновесия химической реакции по справочным данным
- •11. Расчет термодинамических свойств бинарных расплавов в приближении теории регулярных растворов (трр)
- •Результаты расчета термодинамических свойств расплавов Fе–V при 1873 к в приближении трр (числитель) и экспериментальные данные [10] (знаменатель)
- •12. Расчет термодинамических свойств бинарных расплавов в приближении теории квазирегулярных растворов (ткр)
- •Результаты расчета термодинамических свойств расплавов Fе–Тi при 1873 к в приближении ткр (числитель) и экспериментальные данные (знаменатель)
- •13. Расчет термодинамических свойств бинарных расплавов в приближении квазихимической модели (кхм)
- •Результаты расчета термодинамических свойств расплавов Fе–Cu при 1823 к в приближении кхм
- •14. Расчет термодинамических характеристик сплава по диаграмме состояния
- •15. Графическое определение параметров взаимодействия
- •16. Теоретическая оценка параметра по значениям коэффициента активности I и параметра по
- •17. Зависимость параметров взаимодействия от температуры
- •18.Удаление неметаллических включений под действием гравитационных сил
- •19.Влияние конвективных потоков на удаление неметаллических включений
- •20.Укрупнение неметаллических включений в расплавленном металле
18.Удаление неметаллических включений под действием гравитационных сил
Задача. Рассчитать скорости всплывания неметаллических частиц в стали при 1873 К в гравитационном поле (конвективное перемешивание металла не учитывать).
Исходные данные. 1. Плотность глинозема в 3,97103 кг/м3, жидкой при 1873 К силикатной частицы
2,5103
кг/м3,
стали
м
7,15103
кг/м3 ; температура плавления
глинозема 2288 К.
2. Вязкость стали
при 1873 К
м
6103
Пас, силикатной
системы
в
5101
Пас. 3.
Размеры включений 10, 20 и
50 мкм.Теория. Скорость подъема твердых сферических частиц в спокойной жидкости (Re 1) определяется уравнением Стокса:
, (1.78)
где r радиус частиц; м и в плотность вещества среды и включения соответственно; м динамическая вязкость среды; g ускорение свободного падения.
Эта формула получена приравниванием выталкивающей силы, действующей на частицу (сила Архимеда), и силы сопротивления движению в вязкой среде:
r3g(м
– в)
= 6rмυ.
Формула Стокса обычно применима вплоть до Re 1. Поведение частиц размером менее 107 м (0,1 мкм) подчиняется преимущественно закономерностям броуновского движения. Скорость подъема жидких и газообразных сферических частиц в однокомпонентной жидкости определяется уравнением Рыбчинского – Адамара, полученного решением системы соответствующих дифференциальных уравнений:
, (1.79)
где в вязкость вещества частицы.
Очевидно, что для твердой частицы (в >> м) уравнение (1.79) переходит в формулу Стокса.
Решение. В случае всплывания твердых (при 1873 К) включений глинозема (Аl2О3) можно воспользоваться формулой (1.78). Частицы глинозема в металле, как правило, не имеют округлой формы, отклонение формы включений от сферической может заметно влиять на скорость их подъема. В случае одинакового объема наименьшее сопротивление испытывают округлые частицы. Для включений неправильной формы в знаменатель уравнения (1.78) вводят поправочный коэффициент k, равный для частиц А12О3 примерно 6.
Далее будет показано, в каком интервале скоростей движения включения размером 5105 м (50 мкм) в спокойном металле выполняется формула (1.78), т.е. Re (υdм)/м 1, где d характеристический размер, равный диаметру частицы,
υ (Reм)/(мd) (16103)/(7,151035105) 1,6102 м/с. (1.80)
Скорость подъема частицы глинозема размером 10 мкм
υ
0,5105
м/с.
В соответствии с неравенством (1.80) полученное значение скорости удовлетворяет условию Re 1, и для частиц такого размера можно применять уравнение Стокса. Аналогичным образом подсчитываем скорости всплывания частиц размером 20 и 50 мкм, равные соответственно 0,2104 и 1,3104 м/с.
Рассчитаем теперь скорость всплывания жидкого (при 1873 К) силикатного включения размером 10 мкм по формуле (1.79):
υ
4105
м/с.
Для частиц размерами 20 и 50 мкм по уравнению (1.79) получим соответственно скорости всплывания, равные 1,6104 и 1103 м/с. В случае силикатного включения в >> м и поправочный множитель в уравнении Рыбчинского – Адамара примерно равен 1/3, поэтому формула (1.79) переходит в формулу (1.78). Проведенный расчет показывает, что жидкие силикатные включения в спокойном металле всплывают несколько быстрее твердых частиц глинозема, что связано с их меньшей плотностью и сферической формой.
Примечание. В металлургических агрегатах в условиях интенсивного перемешивания металла доставка неметаллических включений к поверхности ванны осуществляется преимущественно конвективными потоками. Гравитационные силы в основном играют роль при переходе частиц через тонкий слой металла, непосредственно прилегающий к границе раздела металл–шлак, где вертикальная составляющая скорости конвективных потоков практически равна нулю.
