- •Черенковские детекторы
- •Счетчик Гейгера-Мюллера. Принцип работы
- •3. Эффект Комптона
- •4. Образование электрон-позитронных пар
- •5. Фотоэффект
- •6. Фотоэлектронный умножитель
- •7. Широкий атмосферный ливень
- •8. Сцинтилляционный метод регистрации излучений. Виды сцинтилляторов
- •9. Калориметры – спектрометры полного поглощения
- •10. Пропорциональный счетчик. Принцип работы
- •11. Мягкая и жесткая компоненты космических лучей
- •12. Функциональные и конструкционные материалы в ядерной индустрии
- •13. Термоядерные установки на современном этапе.
- •Топливная система
- •14. Ускорители на встречных пучках. Принцип работы
- •15. Метод ядерных фотоэмульсий
- •16. Люминесцентный метод регистрации излучений
- •17. Вариации космических лучей Вариации космических лучей
- •18. Изготовление мишеней
- •19. Замедление нейтронов
- •20. Ионизационная камера. Принцип действия
- •21. Камера Вильсона. Принцип работы
- •22. Галактические космические лучи
- •23.Солнечные космические лучи Солнечные космические лучи
- •24. Проблемы солнечных нейтрино
- •25. Принцип действия циклотрона
- •26. Принцип действия бетатрона
- •27. Захоронение радиоактивных отходов
- •28. Устройство нейтронного монитора
- •Компоненты нейтронного монитора
- •29. Устройство мюонного телескопа
- •30. Химический метод регистрации излучения
- •31. Реакторы. Типы реакторов
- •32. Обращение с отработавшим топливом
- •33. Взаимодействие гамма-квантов с веществом.
- •34. Ионизационный метод регистрации излучения
- •35. Ядерная физика в медицине
- •36. Методы регистрации нейтронов
- •37. Микротрон
- •38. Масс-спектрометрия
- •39. Синхрофазотрон
- •40. Линейные ускорители
- •41. Большой адронный коллайдер в церНе
- •42. Исследовательские реакторы
- •43. Ядерный топливный цикл. Открытый и закрытый топливный цикл
- •44. Управляемый синтез легких ядер
- •45. Способы измерения ионизирующих излучений
- •46. Пузырьковые камеры. Принцип работы
- •47. Фазотрон
- •Принцип действия
- •48. Полупроводниковые детекторы. Принцип работы
- •49. Метод жесткой фокусировки в ускорителях
- •52. Проблемы реализации управляемого термоядерного синтеза
- •53. Синхротрон
- •54. Движение заряженных частиц в комбинированных полях
- •55. Состав космических лучей
- •56. Генератор Ваан де Граафа
- •57. Радиационные дозы, обусловленные космическим излучением
- •Газовое центрифугирование
- •Дистилляция
- •Электролиз
- •59. Временные вариации солнечных нейтрино
- •60. Эксперименты по определению массы нейтрино
44. Управляемый синтез легких ядер
Управляемый термоядерный синтез (УТС) — синтез более тяжёлых атомных ядер из более лёгких с целью получения энергии, который, в отличие от взрывного термоядерного синтеза (используемого в термоядерных взрывных устройствах), носит управляемый характер. Управляемый термоядерный синтез отличается от традиционной ядерной энергетики тем, что в последней используется реакция распада, в ходе которой из тяжёлых ядер получаются более лёгкие ядра. В основныхядерных реакциях, которые планируется использовать в целях осуществления управляемого термоядерного синтеза, будут применяться дейтерий(2H) и тритий (3H), а в более отдалённой перспективе гелий-3 (3He) и бор-11 (11B).
Реакция синтеза заключается в следующем: два или более относительно лёгких атомных ядра в результате теплового движения сближаются настолько, что короткодействующее сильное взаимодействие, проявляющееся на таких расстояниях, начинает преобладать над силами кулоновского отталкивания между одинаково заряженными ядрами, в результате чего образуются ядра других, более тяжёлых элементов. Система нуклонов потеряет часть своей массы, равную энергии связи и по известной формуле E=mc², при создании нового ядра освободится значительная энергия сильного взаимодействия. Атомные ядра, имеющие небольшой электрический заряд, легче свести на нужное расстояние, поэтому тяжелые изотопы водорода являются лучшим видом топлива для управляемой реакции синтеза.
Установлено, что смесь двух изотопов, дейтерия и трития, требует меньше энергии для реакции синтеза по сравнению с энергией, выделяемой во время реакции. Однако, хотя смесь дейтерия и трития (D-T) является предметом большинства исследований синтеза, она в любом случае не является единственным видом потенциального горючего. Другие смеси могут быть проще в производстве; их реакция может надёжнее контролироваться, или, что более важно, производить меньшенейтронов. Особенный интерес вызывают так называемые «безнейтронные» реакции, поскольку успешное промышленное использование такого горючего будет означать отсутствие долговременного радиоактивного загрязнения материалов и конструкции реактора, что, в свою очередь, могло бы положительно повлиять на общественное мнение и на общую стоимость эксплуатации реактора, существенно уменьшив затраты на вывод из эксплуатации и утилизацию. Проблемой остаётся то, что реакцию синтеза с использованием альтернативных видов горючего намного сложнее поддерживать, потому D-T реакция считается только необходимым первым шагом.
Управляемый термоядерный синтез может использовать различные виды термоядерных реакций в зависимости от вида применяемого топлива.
Реакция дейтерий + тритий (Топливо D-T)
Самая легко осуществимая реакция — дейтерий + тритий:
2H + 3H = 4He + n при энергетическом выходе 17,6 МэВ (мегаэлектронвольт).
Такая реакция наиболее легко осуществима с точки зрения современных технологий, даёт значительный выход энергии, топливные компоненты дешевы. Недостаток — выход нежелательной нейтронной радиации.
Два ядра: дейтерия и трития сливаются, с образованием ядра гелия (альфа-частица) и высокоэнергетического нейтрона:
