- •Черенковские детекторы
- •Счетчик Гейгера-Мюллера. Принцип работы
- •3. Эффект Комптона
- •4. Образование электрон-позитронных пар
- •5. Фотоэффект
- •6. Фотоэлектронный умножитель
- •7. Широкий атмосферный ливень
- •8. Сцинтилляционный метод регистрации излучений. Виды сцинтилляторов
- •9. Калориметры – спектрометры полного поглощения
- •10. Пропорциональный счетчик. Принцип работы
- •11. Мягкая и жесткая компоненты космических лучей
- •12. Функциональные и конструкционные материалы в ядерной индустрии
- •13. Термоядерные установки на современном этапе.
- •Топливная система
- •14. Ускорители на встречных пучках. Принцип работы
- •15. Метод ядерных фотоэмульсий
- •16. Люминесцентный метод регистрации излучений
- •17. Вариации космических лучей Вариации космических лучей
- •18. Изготовление мишеней
- •19. Замедление нейтронов
- •20. Ионизационная камера. Принцип действия
- •21. Камера Вильсона. Принцип работы
- •22. Галактические космические лучи
- •23.Солнечные космические лучи Солнечные космические лучи
- •24. Проблемы солнечных нейтрино
- •25. Принцип действия циклотрона
- •26. Принцип действия бетатрона
- •27. Захоронение радиоактивных отходов
- •28. Устройство нейтронного монитора
- •Компоненты нейтронного монитора
- •29. Устройство мюонного телескопа
- •30. Химический метод регистрации излучения
- •31. Реакторы. Типы реакторов
- •32. Обращение с отработавшим топливом
- •33. Взаимодействие гамма-квантов с веществом.
- •34. Ионизационный метод регистрации излучения
- •35. Ядерная физика в медицине
- •36. Методы регистрации нейтронов
- •37. Микротрон
- •38. Масс-спектрометрия
- •39. Синхрофазотрон
- •40. Линейные ускорители
- •41. Большой адронный коллайдер в церНе
- •42. Исследовательские реакторы
- •43. Ядерный топливный цикл. Открытый и закрытый топливный цикл
- •44. Управляемый синтез легких ядер
- •45. Способы измерения ионизирующих излучений
- •46. Пузырьковые камеры. Принцип работы
- •47. Фазотрон
- •Принцип действия
- •48. Полупроводниковые детекторы. Принцип работы
- •49. Метод жесткой фокусировки в ускорителях
- •52. Проблемы реализации управляемого термоядерного синтеза
- •53. Синхротрон
- •54. Движение заряженных частиц в комбинированных полях
- •55. Состав космических лучей
- •56. Генератор Ваан де Граафа
- •57. Радиационные дозы, обусловленные космическим излучением
- •Газовое центрифугирование
- •Дистилляция
- •Электролиз
- •59. Временные вариации солнечных нейтрино
- •60. Эксперименты по определению массы нейтрино
22. Галактические космические лучи
Космические лучи были открыты в 1912 г. В. Гессом. Различают первичные космические лучи - космические лучи до входа в атмосферу и вторичные космические лучи, образовавшиеся в результате процессов взаимодействия первичных космических лучей с атмосферой Земли.
Характеристики космических лучей до входа в атмосферу (первичные космические лучи) |
||
|
Галактические космические лучи |
Солнечные космические лучи |
Поток |
~ 1 см-2·с-1 |
Во время солнечных вспышек может достигать ~106 см-2·с-1 |
Состав |
|
98-99% протоны, ~1.5% ядра гелия |
Диапазон энергий |
106 - 1021 эВ |
105 - 1011 эВ |
В результате взаимодействия с ядрами атмосферы первичные космические лучи (в основном протоны) создают большое число вторичных частиц − пионов, протонов, нейтронов, мюонов, электронов, позитронов и фотонов. Таким образом вместо одной первичной частицы возникает большое число вторичных частиц, которые делятся на адронную, мюонную и электронно-фотонную компоненты. Такой каскад покрывает большую территорию и называется широким атмосферным ливнем. Образующиеся пионы могут взаимодействовать с ядрами атмосферы, а могут распадаться, формируя мюонную и электронно-фотонную компоненты ливня. Адронная компонента до поверхности Земли практически не доходит, превращаясь в мюоны, нейтрино и γ-кванты.
π0 →
2γ ,
π+ → μ+ + νμ,
π- → μ- +
μ,
Мюоны в свою очередь могут распадаться
μ+ → e+ + νe + μ, μ- → e- + e + νμ.
Образующиеся при распаде нейтральных пионов γ-кванты вызывают каскад электронов и γ-квантов, которые в свою очередь образуют электрон-позитронные пары. Заряженные лептоны теряют энергию на ионизацию и радиационное торможение. Поверхности Земли в основном достигают релятивистские мюоны. Электронно-фотонная компонента поглощается сильнее. Поток космических лучей на уровне моря примерно в 100 раз меньше потока первичных космических лучей (~0.01 см-2·с-1).
Основными источниками первичных космических лучей являются взрывы сверхновых звезд (галактические космические лучи) и Солнце. Большие энергии (до 1016 эВ) галактических космических лучей объясняются ускорением частиц на ударных волнах, образующихся взрывах сверхновых. Природа космических лучей сверхвысоких энергий пока не имеет однозначной интерпретации. На рис. 5 показан спектр всех частиц первичных галактических лучей. В широком диапазоне энергий спектр апроксимируется соотношением dN/dE ~ E-2.7. Особый интерес представляют области энергий 1015-1016 эВ так называемое "колено" (knee) и 1018-1019 - "лодыжка" (ankle), в которых наблюдаются аномалии. Интенсивность космических лучей на больших интервалах времени была постоянна в течение ~109лет. Однако, появились данные, что 30-40 тыс. лет тому назад интенсивность космических лучей заметно отличалась от современной (см. рис.6). Пик интенсивности связывают со взрывом близкой к Солнечной системе (~50 пк) Сверхновой.
