- •Черенковские детекторы
- •Счетчик Гейгера-Мюллера. Принцип работы
- •3. Эффект Комптона
- •4. Образование электрон-позитронных пар
- •5. Фотоэффект
- •6. Фотоэлектронный умножитель
- •7. Широкий атмосферный ливень
- •8. Сцинтилляционный метод регистрации излучений. Виды сцинтилляторов
- •9. Калориметры – спектрометры полного поглощения
- •10. Пропорциональный счетчик. Принцип работы
- •11. Мягкая и жесткая компоненты космических лучей
- •12. Функциональные и конструкционные материалы в ядерной индустрии
- •13. Термоядерные установки на современном этапе.
- •Топливная система
- •14. Ускорители на встречных пучках. Принцип работы
- •15. Метод ядерных фотоэмульсий
- •16. Люминесцентный метод регистрации излучений
- •17. Вариации космических лучей Вариации космических лучей
- •18. Изготовление мишеней
- •19. Замедление нейтронов
- •20. Ионизационная камера. Принцип действия
- •21. Камера Вильсона. Принцип работы
- •22. Галактические космические лучи
- •23.Солнечные космические лучи Солнечные космические лучи
- •24. Проблемы солнечных нейтрино
- •25. Принцип действия циклотрона
- •26. Принцип действия бетатрона
- •27. Захоронение радиоактивных отходов
- •28. Устройство нейтронного монитора
- •Компоненты нейтронного монитора
- •29. Устройство мюонного телескопа
- •30. Химический метод регистрации излучения
- •31. Реакторы. Типы реакторов
- •32. Обращение с отработавшим топливом
- •33. Взаимодействие гамма-квантов с веществом.
- •34. Ионизационный метод регистрации излучения
- •35. Ядерная физика в медицине
- •36. Методы регистрации нейтронов
- •37. Микротрон
- •38. Масс-спектрометрия
- •39. Синхрофазотрон
- •40. Линейные ускорители
- •41. Большой адронный коллайдер в церНе
- •42. Исследовательские реакторы
- •43. Ядерный топливный цикл. Открытый и закрытый топливный цикл
- •44. Управляемый синтез легких ядер
- •45. Способы измерения ионизирующих излучений
- •46. Пузырьковые камеры. Принцип работы
- •47. Фазотрон
- •Принцип действия
- •48. Полупроводниковые детекторы. Принцип работы
- •49. Метод жесткой фокусировки в ускорителях
- •52. Проблемы реализации управляемого термоядерного синтеза
- •53. Синхротрон
- •54. Движение заряженных частиц в комбинированных полях
- •55. Состав космических лучей
- •56. Генератор Ваан де Граафа
- •57. Радиационные дозы, обусловленные космическим излучением
- •Газовое центрифугирование
- •Дистилляция
- •Электролиз
- •59. Временные вариации солнечных нейтрино
- •60. Эксперименты по определению массы нейтрино
15. Метод ядерных фотоэмульсий
ЯДЕРНАЯ ФОТОГРАФИЧЕСКАЯ ЭМУЛЬСИЯ - фотография, эмульсия, предназначенная для регистрации траекторий (треков, следов) частиц. Метод Я. ф. э. основан на том, что заряж. частица, проходя через эмульсию, разрушает кристаллы галогенида серебра и делает их способными к проявлению.
Я. ф. э. используется в качестве детектора частиц в ядерной физике, физике элементарных частиц, при исследовании космических лучей, в дозиметрии .Первым применением фотоэмульсии в ядерной физике можно считать исследования А. Беккереля (A. Becquerel), к-рый в 1895 обнаружил радиоактивность солей по вызываемому ими почернению фотоэмульсии. В 1910 С. Киношита (S. Kinoshita) показал, что зёрна галогенида серебра обычной фотоэмульсии становятся способными к проявлению, если через них прошла хотя бы одна a-частица, В 1927 Л. В. Мысовский с сотрудниками изготовил пластинки с толщиной эмульсионного слоя 50 мкм и наблюдал с их помощью рассеяние a-частиц на ядрах эмульсии. В 30-х гг. началось изготовление Я. ф. э. со стандартными свойствами, с помощью к-рых можно было регистрировать следы медленных частиц (a-частиц, протонов). В 1937-38 М. Блау и Г. Вамбахер (М. Blau, H. Wambacher, Австрия), а также А. П. Жданов с сотрудниками наблюдали в Я. ф. э. расщепления ядер, вызванные космич. излучением. В 1945-48 появились Я. ф. э., пригодные для регистрации слабо ионизующих однозарядных релятивистских частиц; метод Я. ф. э. стал точным количеств. методом исследований.
Я. ф. э. отличается от обычной фотоэмульсии особенностями: отношение массы галогенида серебра к массе желатина в 8 раз больше; толщина слоя, как правило, в 10-100 раз больше, достигает иногда 1000-2000 мкм и более (стандартная толщина фирменных Я. ф. э. 100-600 мкм). Зёрна галогенида серебра в эмульсии имеют сферич. или кубич. форму, их линейный размер зависит от сорта эмульсии и обычно составляет 0,08-0,30 мкм.
Свойства следа,
оставленного в эмульсии заряж. частицей,
зависят от её заряда е,
скорости u и массы т.
Так, остаточный пробег частицы (длина
следа от его начала до точки остановки)
при данных е и
u пропорционален т; при
достаточно большой скорости u
частицыплотность зёрен
(число проявленных зёрен на единицу
длины следа) q
e2/u2.
Если плотность зёрен слишком велика,
они слипаются в сплошной чёрный след.
В этом случае, особенно если е велико,
мерой заряда может быть число d-электро-нов,
образующих на следе характерные
ответвления. Их плотность также
пропорциональна е2/u2.
Если е=1,
а u~с,
то след частицы в Я. ф. э. имеет вид
прерывистой линии из 20-25 чёрных точек
на ~ 100 мкм пути.
В Я. ф. э. можно измерять рассеяние частицы-ср. угловое отклонение на единицу пути: j~e/pu(p-импульс частицы). Я. ф. э. можно поместить в сильное магн. поле и измерить импульс частицы и знак её заряда, что позволяет определить заряд, массу и скорость частицы. Достоинства метода Я. ф. э.- высокое пространств. разрешение (можно различать явления, отделённые расстояниями меньше 1 мкм, что для релятивистской частицы соответствует временам пролёта ~10-16 с) и возможность длительного накопления редких событий.
