- •1 Тарау
- •1.1. Аспан. Аспан денелерінің көрінетін қозғалыстары
- •1.2. Сфералық геометрияның негізгі ұғымдары. Сфералық үшбұрыштар
- •1.1 Сурет – Сфералық геометрияның негізгі ұғымдары.
- •1.2 Сурет - Сфералық үшбұрыш
- •1.3. Жер пішіні. Географиялық координаттар
- •1.3 Сурет – Географиялық координаттарды анықтау
- •1.5 Сурет – Астрономиялық, геоцентрлік және геодезиялық ендіктерді анықтау
- •1.4. Аспан координаттарының жүйелері
- •1.4.1. Аспан сферасы
- •1.6 Сурет - Аспан сферасы
- •1.4.2. Горизонталды координаттар жүйесі
- •1.7 Сурет - Горизонталды координаттар жүйесі
- •1.4.3. Бірінші экваторлық координаттар жүйесі
- •1.8 Сурет - Экваторлық координаттар жүйелері
- •1.4.4. Екінші экваторлық координаттар жүйесі
- •1.4.5. Эклиптикалық координаттар жүйесі
- •1.4.6. Галактикалық координаттар жүйесі
- •1.10 Сурет - Галактикалық координаттар жүйесі
- •1.5. Шырақтар координаттарының тәуліктік қозғалыс кезіндегі өзгерісі
- •1.15 Сурет – Шырақтардың Жердің солтүстік
- •1.6. Параллакстық үшбұрыш және аспан координаттарын өзара түрлендіру
- •1.16 Сурет – Параллакстық үшбұрыш
- •1.7. Қазіргі заманғы астрометрияда координат жүйелерін анықтау
- •1.8. Каталог дәуірі, стандарт дәуірі, күн мен түннің теңелу дәуірі
- •1.9. Қазіргі заманғы астрометрияда координат жүйелерін жүзеге асыру
- •1.10. Жер қозғалысы
- •1.10.1. Жер осінің прецессиялық және нутациялық қозғалысы
- •1 .18 Сурет – Сфероидтің сыртқы денеге тартылысы (барлық нүктелер мен сызықтар парақ жазықтығында жатыр)
- •1.19 Сурет – Жер осінің прецессиялық қозғалысы
- •1.10.2. Жер осінің прецессиялақ қозғалысының салдарлары
- •1.10.3. Жер полюсінің жер беті бойымен қозғалысы
- •1.21 Сурет - 1995-2000жж. Және 1900-2000 жж. Аралықтарындағы полюстің қозғалысы
- •1.10.4. Жер айналуының бірқалыпсыздығы
- •1 .22 Сурет – 1980-2000 жж. Аралығындағы тәулік ұзақтығының өзгеруі.
- •1.11. Уақытты санау жүйелері
- •1.11.1. Жұлдыздық және күн уақыты
- •1.11.2. Жұлдыздық тәуліктер және жұлдыздық уақыт.
- •1.23 Сурет – Жұлдыздық уақыттың шырақтың тік шарықтауы мен сағаттық бұрышымен байланысы
- •1.11.3. Шын күн тәуліктері мен шын күн уақыты
- •1.19 Сурет - Шын күн тәулігінің бірқалыпсыздығын түсіндіруге
- •1.11.4. Орташа күн тәуліктері және орташа күн уақыты
- •1.20 Сурет – Уақыт теңдеуінің графигі: 1 – уақыт теңдеуі, 2 – центр теңдеуі, 3 – эклиптика көлбеулігінің теңдеуі.
- •1.11.6. Әлемдік уақыт
- •1.21 Сурет - ut1-utc айырмасы; mjd - модификацияланған юлиан күні
- •1.11.7. Жергілікті уақыт және бойлық
- •1.11.8. Белдеулік және декреттік уақыттар
- •1.11.9. Динамикалық уақыт шкалалары
- •1.11.10. Атомдық уақыт шкалалары
- •1.12. Жұлдыздардың аспан сферасындағы орналасуын бұрмалайтын эффектілер
- •1.12.1. Астрономиялық рефракция. Астрономиялық рефракция туралы түсінік
- •1.12.2. Жазық-параллель атмосферадағы оптикалық рефракция
- •1.12.3. Сфералық-симметриялы атмосферадағы оптикалық рефракция
- •1.12.4. Рефракцияның жұлдыздың тік шарықтауы мен еңкеюіне әсері
- •1.12.5. Аберрация мен параллакстық ығысу туралы жалпы түсінік
- •1.12.6. Жұлдыз координаттарының рефракция мен аберрация салдарынан өзгерісінің жалпы формулалары
- •1.12.7. Тәуліктік аберрация
- •1.12.8. Жылдық аберрация
- •1.12.9. Ғасырлық аберрация
- •1.12.10.Планеталық аберрация
- •1.12.11. Тірек көзінің координаттарының Күннің гравитациялық өрісіндегі өзгеруі туралы түсінік
- •1.12.12. Оптикалық бақылауларды редукциялау
- •2 Тарау
- •2.1. Планеталардың көрінетін және нақты қозғалысы
- •2.1.1. Планеталардың көрінетін қозғалысы
- •2.1.2. Птолемейдің әлемдік жүйесі
- •2.1.3. Коперниктің әлемдік жүйесі
- •2.1.4. Планеталардың көрінетін қозғалысы мен конфигурацияларын түсіндіру
- •2.1.5. Планеталар айналуларының синодтық және сидерлік периодтары
- •2.1.6. Кеплер заңдары
- •2.1.7. Кеплердің 1-ші (жалпылама) заңы
- •2.1.8. Кеплердің 2-ші заңы
- •2.1.9. Кеплердің үшінші (түзетілген) заңы
- •2.1.10. Ұйытқыған қозғалыс туралы түсінік
- •2.1.11. Айдың қозғалыс орбитасы және ұйытқуы
- •2.1.12. Айдың көрінетін қозғалысы мен фазалары
- •2.1.13. Ай тұтылуы
- •3 Тарау. Астрофизика элементтері.
- •3.1.1. Астрофизика пәні, негізгі мәселелері
- •3.1.2. Астрофизикада зерттелетін электромагниттік сәулелену аймағы
- •3.1.3. Спектрлік талдау
- •3.1.4. Абсолют жұлдыздық шама
- •3.1.5. Астрофизиканың әдістері мен аспаптары
- •3.2.1. Күн туралы жалпы мәліметтер
- •3.2.2. Күн айналысы
- •3.2.3. Күн құрылысы
- •3.2.4. Күннің ішкі қабаттары
- •3.2.5. Күн ішіндегі конвекция
- •3.2.6. Күн атмосферасы
- •3.2.7. Күн тәжінің қыздырылу механизмдері
- •3.2.8. Плазма қасиеттерін астрофизикалық құбылыстарды түсіндіруге қолдану
- •3.2 Сурет
- •3.3 Сурет
- •3.2.9. Күннің магнит өрісі
- •3.4 Сурет - Фотосфера астындағы жалпы азимутал магнит өрісінің Күн бетіне көтерілу нәтижесінде түзілетін күн дақтарындағы магнит өрістері
- •3.5 Сурет – Күннің ірімасштабты магнит өрісінің осі бойынша симметриялы құраушысы.
- •3.2.10. Күн белсенділігі туралы түсінік. Күн белсенділігінің циклдері
- •3.2.12. Планетааралық магнит өрісі (пмө)
- •3.8 Сурет - Планетааралық магнит өрісінің күш сызығының пішіні.
- •3.3. Күннің радиосәулеленуі
- •3.3.1 Радиожарқылдар, олардың пайда болуы және түрлері
- •3.10 Сурет. Күннің радиожарқылдардың спектрлік классификациясы [3].
- •3.3.2. Радиожарқылдардың сандық классификациясы
- •3.11 Сурет. Жарқылдардың спектрлік классификациясы
- •3.4. Жұлдыздар
- •3.4.1. Қалыпты жұлдыздар
- •3.4.2. Қалыпты жұлдыздардың спектрлері және спектрлік классификациясы
- •3.4.3. Колориметрия негіздері
- •3.4.4. Спектр – жарықтылық (Герцшпрунг-Рассел) диаграммасы
- •3.4.5. Жұлдыздар өлшемдерін анықтау әдістері
- •3.4.6. Радиус-жарықтылық-масса тәуелділігі
- •3.4.7. Жұлдыздар құрылымы және жұлдыздар қойнауындағы физикалық күйлер
- •3.4.8. Қос жұлдыздар
- •3.4.9. Қос жүйелердің жалпы сипаттамалары
- •3.4.10. Визуалды қос жұлдыздар
- •3.4.11. Тұтылған айнымалы жұлдыздар
- •3.4.12. Спектрлі қос жұлдыздар
- •3.4.13. Физикалық айнымалы жұлдыздар
- •3.4.14. Пульсациялаушы айнымалылар
- •3.4.15. Рентген сәулелерінің көздері
- •4 Тарау. Әлем құрылымы (галактикалар)
- •4.1. Жұлдыздар, жұлдыз шоғырлары, галактикалар
- •4.2. Галактикалар түрлерi, олардың қасиеттерi
- •4.3. Галактикалардың белсенді ядролары, квазарлар
- •4.4. Галактикалар шоғырлары. Әлемнің ірімасштабты құрылымдары
- •1 Юлиан күндері, юлиан дәуірлері
- •Пайдаланылған әдебиеттер
- •3.2.12.Планетааралық магнит өрісі (пмө).................................149
3.2.12. Планетааралық магнит өрісі (пмө)
Тәж плазмасы үшін идеал өткізгіштік жуықтау жарамды, өйткені тәждің сипатты өлшемінің үлкендігіне байланысты, сөну уақыты өте жоғары болады. Сондықтан тәждегі күн магнит өрістері тәж плазмасына қатырылған болады. Кейбір гелиоцентрлік қашықтықтан бастап, магнит қысымы плазманың кинетикалық энергиясың тығыздығынан аз болады. Демек тәждің магнит өрістері плазма бөлшектері артынан қозғалып, планета аралық ортаға әкетіледі де, ПМӨ-ні құрайды. Яғни планетааралық магнит өрістері күн желі плазмасымен планета аралық кеңістікте шығарылған күн магнит өрістері болып табылады. Паркер үлгісі бойынша плазма бөлшектері, олармен байланысты магнит күш сызығының учаскелері де, шамамен радиал бағытта қозғалады, ал күш сызығының “негізі”, “күн бетіндегі” белгілі нүктемен байланысқан болғандықтан, күнмен бірге айналады. Мұның нәтижесінде ПМӨ күш сызықтары Архимед шиыршығына (спираліне) жақын пішінді алады (3.8 суретті қара)
3.8 Сурет - Планетааралық магнит өрісінің күш сызығының пішіні.
Әзір біз идеал жағдайды, яғни күн желі изатропты түрде және тұрақты жылдамдықпен ағылатын жағдайды қарастырып отырмыз.
Шиыршық
орамдары
конусының бетінде орналасады. Үйектерге
жақындаған сайын (
)
B
құраушының азаюынан жоғары ендіктердегі
ПМӨ көптен-көп радиал бола береді.
Эклиптика жазықтығында (көбінесе біз оны гелио экватор жазықтығымен беттеседі деп есептейміз) магнит өрісі секторлық құрылымын білдіреді, әр сектордағы магнит өрісінің радиал құраушысы не күнге қарай, не күннен қарай бағытталған. Көбінесе не екі, не төрт күнмен бірге айналатын сектор байқалады. ПМӨ- нің секторлық құрылымы планета аралық ортада тоқтық қабаттың бар болуының салдары болып табылады. Бұл тоқ қабатын швед астрофизика Альбенмен алдын ала болжаған еді. Ол күндегі белсенді аймақтармен байланысты тәж бөліктерден өтеді де, күн магнит өрісінің радиал құраушысы қарама-қарсы бағытталған белсенді аймақтарды бөледі. Тоқтық қабат шамамен Күн экваторы жазықтығында орналасады және қатпарлы (балерина белдемшесіндей) болып келеді. Күннің айналуы қатпарлардың шиыршыққа оралуына әкеледі. Тоқтық қабат магнит өрісінің кенет өзгеруін тудырады. Одан жоғары ПМӨ- нің радиал құраушысы бір таңбалы (бағытты) болады, тоқтық қабаттан төмен - қарама-қарсы таңбалы (бағытта) болады. Эклиптика жазықтығының қасында қозғалып, бақылаушы (мысалы, Жердегі бақылаушы) тоқтық қабаттан біресе жоғары, біресе төмен аймақтарға түседі де, ПМӨ- нің радиал құраушысының таңбасы әр- түрлі секторларға түседі.
ПМӨ құраушыларының кеңістіктік тәуелділігіне және шиыршық пен радиал бағыт арасындағы бұрышына қатысты Паркер үлгісінің салдарлары ғарыштық аппарат ұшырулар жүрісінде тексерілген. Паркер үлгісіне сәйкес ПМӨ-нің радиал құраушысы r –ге r-2 заңы бойынша тәуелді, бұл тәуелділік эксперимент жүзінде расталды. Азимуттік құраушысы үшін үйлесімділік нашарлау болып шықты. Әртүрлі авторлар r- тәуелділігі үшін 0,81,6) мәндерін келтіреді. Яғни азимуттік құраушы Паркер үлгісіне барлық жағдайларда дәл келмейді, дегенмен теорияның бақылау мәліметтерімен үйлесімділігі тұтас алғанда қанағаттанарлық деп есептеуге болады. Тәжірибелік тәуелділіктердің Паркер үлгісінен айырмашылығы ғарыштық аппараттың көбі ұшқан 110 а.б. қашықтықтарда магнит энергиясы күн желінің кинетикалық энергиясынан екі реттілікке дерлік төмен болғанына байланысты болуы мүмкін. Бұл себептен күн желі ағылуының сфералық симметриясынан үлкен емес ауытқуы күн желінің жылдамдығы мен концентрациясына әсер етпей дерлік, магнит өрісінің айтарлықтай өзгеруіне әкеле алады.
Біз қарастырғанымыз - идеал жағдай. Күнде болатын құбылыстар күн желінің тынық, реттелген, изотропты ағылуын бұзады. Кейде Күннің бөлек аймақтарында күн желі бөлшектері жылдамдығының кенет өсуі үшін шарттар туады. Осының нәтижесінде планета аралық кеңістікке күн айналу арқылы Архимед спираліне оралатын шапшаң плазма ағыны ұмтылады. Шапшаң бөлшектер бұрын шығарылған тынық ағынның бөлшектерін қуып жетеді. Бұл шапшаң ағын алдындағы плазманың сығылуына, демек оған қатырылған магнит өрісінің өсуіне, ал ағын артындағы плазманың сиретілуіне, демек магнит өрісінің азаюына, әкеледі. Шапшаң ағынның баяу ағынға қатысты жылдамдығы аса дыбысты болғанда, олардың шекарасында соққы толқын қалыптасады. Соққы толқындардың бар болуы, әртүрлі плазмалық орнықсыздықтардың (үзілістер, магнит өрісінің (Альвен толқындар) және зат тығыздығының (магнитдыбыс толқындары) тербелістері, т.б.) әсері планетааралық кеңістікте ұйытылмаған шиыршықты магнит өрсімен қатар кездейсоқ, жүйесіз магнит өрістерінің пайда болуына әкеледі. Бұл кездейсоқ магнит өрістер планетааралық ортада магнит біртекті еместіктерінің жүйесін құрайды, бұл біртекті еместіктердің өлшемдері бір астрономиялық бірліктен 100 км-ге дейінгі өте кең спектрді құрайды. Жоғарыда қарастырылған ПМӨ- нің секторлары магнит біртекті еместіктердің ең ірілері болып табылады.
Сонымен ПМӨ екі құраушыдан тұрады: ол жүйелі (реттелген, ірі масштабты) және кездейсоқ құраушылар. Кездейсоқ құраушыны сипаттау үшін магнит біртекті еместіктерінің жиіліктік спектрі деп аталатын түсінікті қолданады. Ол өлшемдері әртүрлі магнит біртекті еместіктеріне кездейсоқ магнит өрісінің қандай энергиясының келетінін, былайша айтқанда кездейсоқ магнит өрісінің энергиясы өлшемдері әртүрлі магнит біртекті еместіктер арасында қалай үлестірілгенін көрсетеді. Оны қалай табады? ПМӨ-ні өлшеп тұрған ғарыштық аппарат арқылы магнит біртекті еместіктері u Күн желі жылдамдығымен өтеді, яғни біртекті еместіктердің T өту уақытын (периодын) өлшеп, оның өлшемін табуға болады (l=Т .u). Периодтың орнына әдетте жиілікті қолданады: = 1/T. Ал B2/8-ге тең біртекті еместіктегі магнит өрісінің энергиясы орнына – жиіліктің белгілі аралығындағы магнит өрісінің энергиясын, оны бұл жағдайда энергия тығыздығы деп атайды. Сонда, магнит энергиясы тығыздығының кездейсоқ ПМӨ-ң жиілігіне тәуелділігі ПМӨ-ң жиіліктік спектрі деп аталады. Өлшеулер бұл спектрдің суреттегідей түрін бертеді. Яғги, ПМӨ-ң жиіліктік спектрінің түрі – құламалы.
