- •1 Тарау
- •1.1. Аспан. Аспан денелерінің көрінетін қозғалыстары
- •1.2. Сфералық геометрияның негізгі ұғымдары. Сфералық үшбұрыштар
- •1.1 Сурет – Сфералық геометрияның негізгі ұғымдары.
- •1.2 Сурет - Сфералық үшбұрыш
- •1.3. Жер пішіні. Географиялық координаттар
- •1.3 Сурет – Географиялық координаттарды анықтау
- •1.5 Сурет – Астрономиялық, геоцентрлік және геодезиялық ендіктерді анықтау
- •1.4. Аспан координаттарының жүйелері
- •1.4.1. Аспан сферасы
- •1.6 Сурет - Аспан сферасы
- •1.4.2. Горизонталды координаттар жүйесі
- •1.7 Сурет - Горизонталды координаттар жүйесі
- •1.4.3. Бірінші экваторлық координаттар жүйесі
- •1.8 Сурет - Экваторлық координаттар жүйелері
- •1.4.4. Екінші экваторлық координаттар жүйесі
- •1.4.5. Эклиптикалық координаттар жүйесі
- •1.4.6. Галактикалық координаттар жүйесі
- •1.10 Сурет - Галактикалық координаттар жүйесі
- •1.5. Шырақтар координаттарының тәуліктік қозғалыс кезіндегі өзгерісі
- •1.15 Сурет – Шырақтардың Жердің солтүстік
- •1.6. Параллакстық үшбұрыш және аспан координаттарын өзара түрлендіру
- •1.16 Сурет – Параллакстық үшбұрыш
- •1.7. Қазіргі заманғы астрометрияда координат жүйелерін анықтау
- •1.8. Каталог дәуірі, стандарт дәуірі, күн мен түннің теңелу дәуірі
- •1.9. Қазіргі заманғы астрометрияда координат жүйелерін жүзеге асыру
- •1.10. Жер қозғалысы
- •1.10.1. Жер осінің прецессиялық және нутациялық қозғалысы
- •1 .18 Сурет – Сфероидтің сыртқы денеге тартылысы (барлық нүктелер мен сызықтар парақ жазықтығында жатыр)
- •1.19 Сурет – Жер осінің прецессиялық қозғалысы
- •1.10.2. Жер осінің прецессиялақ қозғалысының салдарлары
- •1.10.3. Жер полюсінің жер беті бойымен қозғалысы
- •1.21 Сурет - 1995-2000жж. Және 1900-2000 жж. Аралықтарындағы полюстің қозғалысы
- •1.10.4. Жер айналуының бірқалыпсыздығы
- •1 .22 Сурет – 1980-2000 жж. Аралығындағы тәулік ұзақтығының өзгеруі.
- •1.11. Уақытты санау жүйелері
- •1.11.1. Жұлдыздық және күн уақыты
- •1.11.2. Жұлдыздық тәуліктер және жұлдыздық уақыт.
- •1.23 Сурет – Жұлдыздық уақыттың шырақтың тік шарықтауы мен сағаттық бұрышымен байланысы
- •1.11.3. Шын күн тәуліктері мен шын күн уақыты
- •1.19 Сурет - Шын күн тәулігінің бірқалыпсыздығын түсіндіруге
- •1.11.4. Орташа күн тәуліктері және орташа күн уақыты
- •1.20 Сурет – Уақыт теңдеуінің графигі: 1 – уақыт теңдеуі, 2 – центр теңдеуі, 3 – эклиптика көлбеулігінің теңдеуі.
- •1.11.6. Әлемдік уақыт
- •1.21 Сурет - ut1-utc айырмасы; mjd - модификацияланған юлиан күні
- •1.11.7. Жергілікті уақыт және бойлық
- •1.11.8. Белдеулік және декреттік уақыттар
- •1.11.9. Динамикалық уақыт шкалалары
- •1.11.10. Атомдық уақыт шкалалары
- •1.12. Жұлдыздардың аспан сферасындағы орналасуын бұрмалайтын эффектілер
- •1.12.1. Астрономиялық рефракция. Астрономиялық рефракция туралы түсінік
- •1.12.2. Жазық-параллель атмосферадағы оптикалық рефракция
- •1.12.3. Сфералық-симметриялы атмосферадағы оптикалық рефракция
- •1.12.4. Рефракцияның жұлдыздың тік шарықтауы мен еңкеюіне әсері
- •1.12.5. Аберрация мен параллакстық ығысу туралы жалпы түсінік
- •1.12.6. Жұлдыз координаттарының рефракция мен аберрация салдарынан өзгерісінің жалпы формулалары
- •1.12.7. Тәуліктік аберрация
- •1.12.8. Жылдық аберрация
- •1.12.9. Ғасырлық аберрация
- •1.12.10.Планеталық аберрация
- •1.12.11. Тірек көзінің координаттарының Күннің гравитациялық өрісіндегі өзгеруі туралы түсінік
- •1.12.12. Оптикалық бақылауларды редукциялау
- •2 Тарау
- •2.1. Планеталардың көрінетін және нақты қозғалысы
- •2.1.1. Планеталардың көрінетін қозғалысы
- •2.1.2. Птолемейдің әлемдік жүйесі
- •2.1.3. Коперниктің әлемдік жүйесі
- •2.1.4. Планеталардың көрінетін қозғалысы мен конфигурацияларын түсіндіру
- •2.1.5. Планеталар айналуларының синодтық және сидерлік периодтары
- •2.1.6. Кеплер заңдары
- •2.1.7. Кеплердің 1-ші (жалпылама) заңы
- •2.1.8. Кеплердің 2-ші заңы
- •2.1.9. Кеплердің үшінші (түзетілген) заңы
- •2.1.10. Ұйытқыған қозғалыс туралы түсінік
- •2.1.11. Айдың қозғалыс орбитасы және ұйытқуы
- •2.1.12. Айдың көрінетін қозғалысы мен фазалары
- •2.1.13. Ай тұтылуы
- •3 Тарау. Астрофизика элементтері.
- •3.1.1. Астрофизика пәні, негізгі мәселелері
- •3.1.2. Астрофизикада зерттелетін электромагниттік сәулелену аймағы
- •3.1.3. Спектрлік талдау
- •3.1.4. Абсолют жұлдыздық шама
- •3.1.5. Астрофизиканың әдістері мен аспаптары
- •3.2.1. Күн туралы жалпы мәліметтер
- •3.2.2. Күн айналысы
- •3.2.3. Күн құрылысы
- •3.2.4. Күннің ішкі қабаттары
- •3.2.5. Күн ішіндегі конвекция
- •3.2.6. Күн атмосферасы
- •3.2.7. Күн тәжінің қыздырылу механизмдері
- •3.2.8. Плазма қасиеттерін астрофизикалық құбылыстарды түсіндіруге қолдану
- •3.2 Сурет
- •3.3 Сурет
- •3.2.9. Күннің магнит өрісі
- •3.4 Сурет - Фотосфера астындағы жалпы азимутал магнит өрісінің Күн бетіне көтерілу нәтижесінде түзілетін күн дақтарындағы магнит өрістері
- •3.5 Сурет – Күннің ірімасштабты магнит өрісінің осі бойынша симметриялы құраушысы.
- •3.2.10. Күн белсенділігі туралы түсінік. Күн белсенділігінің циклдері
- •3.2.12. Планетааралық магнит өрісі (пмө)
- •3.8 Сурет - Планетааралық магнит өрісінің күш сызығының пішіні.
- •3.3. Күннің радиосәулеленуі
- •3.3.1 Радиожарқылдар, олардың пайда болуы және түрлері
- •3.10 Сурет. Күннің радиожарқылдардың спектрлік классификациясы [3].
- •3.3.2. Радиожарқылдардың сандық классификациясы
- •3.11 Сурет. Жарқылдардың спектрлік классификациясы
- •3.4. Жұлдыздар
- •3.4.1. Қалыпты жұлдыздар
- •3.4.2. Қалыпты жұлдыздардың спектрлері және спектрлік классификациясы
- •3.4.3. Колориметрия негіздері
- •3.4.4. Спектр – жарықтылық (Герцшпрунг-Рассел) диаграммасы
- •3.4.5. Жұлдыздар өлшемдерін анықтау әдістері
- •3.4.6. Радиус-жарықтылық-масса тәуелділігі
- •3.4.7. Жұлдыздар құрылымы және жұлдыздар қойнауындағы физикалық күйлер
- •3.4.8. Қос жұлдыздар
- •3.4.9. Қос жүйелердің жалпы сипаттамалары
- •3.4.10. Визуалды қос жұлдыздар
- •3.4.11. Тұтылған айнымалы жұлдыздар
- •3.4.12. Спектрлі қос жұлдыздар
- •3.4.13. Физикалық айнымалы жұлдыздар
- •3.4.14. Пульсациялаушы айнымалылар
- •3.4.15. Рентген сәулелерінің көздері
- •4 Тарау. Әлем құрылымы (галактикалар)
- •4.1. Жұлдыздар, жұлдыз шоғырлары, галактикалар
- •4.2. Галактикалар түрлерi, олардың қасиеттерi
- •4.3. Галактикалардың белсенді ядролары, квазарлар
- •4.4. Галактикалар шоғырлары. Әлемнің ірімасштабты құрылымдары
- •1 Юлиан күндері, юлиан дәуірлері
- •Пайдаланылған әдебиеттер
- •3.2.12.Планетааралық магнит өрісі (пмө).................................149
3.2.9. Күннің магнит өрісі
Күн магнит өрістерінің пайда болуы гидромагниттік динамомен, яғни магнит өрісін өткізетін ортаның гидродинамикалық қозғалыстарымен байланысты. Қазіргі заманғы түсініктер бойынша Күнде күш сызықтары меридионал жазықтықтарда жататын полоидал және әр нүктеде меридионал жазықтыққа перпендикуляр тороидал (азимутал) магнит өрістері бар.
Солтүстік (N) және оңтүстік (S) жарты шардағы тороидал (азимутал) өрістің бағыты әр-түрлі. Тороидал өрістің ең байқамдысы – Күн дақтарындағы магнит өрісі. Күн дақтардағы магнит өрісінің максимал кернеулігі ~ 4000 Э-ке жетеді (В 4000 Гс).
3.4 Сурет - Фотосфера астындағы жалпы азимутал магнит өрісінің Күн бетіне көтерілу нәтижесінде түзілетін күн дақтарындағы магнит өрістері
Өрістер әрдайым Күн бетіне шығып кетсе де, байқаулар жетерсіз терең аймақтарда пайда болады. Күн магнит өрістері бар екенін біз тек олар Күн беті астынан сыртына шыға алатынына байланысты білдік. Қазір белгілі болғандай, Күн ядросында кернеулігі 10 6 Гс-қа жететін алғашқы магнит өрісі жасырылған болуы мүмкін.
1953 жылы американдық астроном Бэбкок Күн магнит өрістерінің әлдеқайда әлсіздеу дипольдік құраушысын ашты. Бұл дипольдің магнит моменті Күннің айналу осі бойымен бағытталған, сондықтан бұл құраушы полоидал болып табылады. Бұл құраушы үйектік (полюстік) аймақтарда ең анық көрінеді (білінеді).
XX- ғасырдың 70- жылдары күн магнит өрістерінің кернеулігі бойынша шамамен полоидал өрістей әлсіз аксиал симметриясыз ірі масштабты құраушысы табылды. Ол радиал құраушысы әртүрлі кеңістіктік секторларда әр түрлі бағытталған планета аралық магнит өрістерімен (ПМӨ) байланысты болып шықты.
3.5 Сурет – Күннің ірімасштабты магнит өрісінің осі бойынша симметриялы құраушысы.
ПМӨ-ң төрт секторлы құрылымы осі Күн экватор жазықтығында жатқан Күндегі квадрупольге сәйкес, кейде ПМӨ-ң екі секторлы құрылымы байқалады, ол Күндегі дипольге сәйкес болады (ПМӨ және оның секторлық құрылымы туралы толығырақ келесі тақырыпта).
Тұтасымен алғанда, Күнің іріауқымды магнит өрістері жеткілікті күрделі болып табылады. Ұсақ масштабтарда өрістің одан да күрделі құрылымы табылды.
Байқаулар
кернеулігі
Э
жететін ұсақауқымды инетәрізді өрістердің
барлығын көрсетті. Ұсақ масштабты
өрістер Күн бетінде байқалатын
конвенциялық ұяшықтармен де байланысты.
Қисық магнит өрісінің радиал құраушысын оң және теріс бағытталған аймақтарға бөледі. Магнит өрісінің оң бағыты деп магнит өрісінің күш сызықтары күннен сыртқа қарай шығатын жағдайды айтады. Магнит өрісінің теріс бағыты деп күш сызықтары Күнге қарай бағытталған (Күнге кіретін) жағдайды айтады
|
3.6 сурет - Күнің іріауқымды магнит өрістерінің радиал құраушысы.. |
3.2.10. Күн белсенділігі туралы түсінік. Күн белсенділігінің циклдері
Күн магнит өрістері күн бетіне шыққанда, түрлі стационар емес процестер жүре бастайды, белсенді аймақтар түзіледі. Олардың бәрі күн белсенділігің білінулері болып табылады. Күн белсенділігіңің деңгейін сипаттайтын көптеген шамалар қолданылады, оларды күн белсінділігінің индекстері деп атайды. Олар ішіндегі ең жиі қолданылатын – Вольф сандары: W = 10g + f, мұндағы g – дақ топтарының саны, f – Күннің көрінетін жартышарындағы дақтардың толық саны.
Күн белсенділігің өзгерісінде түрлі периодтылықтар бақыланады, олар күн магнит өрістерінің өзгеруімен байланысты болады екен. Бұл өзгерістер мынадай сипатта болады. Ұсақауқымды магнит өрістер реттелген емес, бейберекет (хаостық) түрде өзгереді. Өсі бойынша симметриясыз өрістің секторлық құрылымы шамамен Күннің өз осі айналу мерзімімен өзгереді. Ал полоидал мен тороидал ірімасштабты өрістер квазипериодты түрде, шамамен 22 жылға тең мерзімімен өзгереді. Диполь құраушысының төңкерісі және азимутал өріс бағытының алмасуы әр 11 жылда болады. Күн белсенділігінің өзгерісінде 11 жылдық циклі бақыланатыны жақсы белгілі. Хэйл күн белсенділігі көрсеткіштерінің бірі болып табылатын күн дақтарындағы спектрлік сызықтарының Зееман жіктелуін тіркеп, күн белсенділігінің 11 жылдық циклі мерзімі ~22 жылға тең Күн магнит циклінің бөлігі болып табылатындығын көрсеткен. Біртіндеп Күн бетіндегі және Күн беті үстіндегі барлық реттелген емес құбылыстар Күн бетіне шығатын магнит өрістерімен себептелінетіні айқындалды.
11 жылдық циклінің басында, Күн белсенділігінің минимумінен кейін, Күн экваторынан алыс, ~300-400 ендікте, күшті азимутал магнит өрісімен бірге күн дақтары пайда болады. Цикл жүрісінде дақтар аумағы (азимутал магнит өрісімен бірге) экваторға қарай түседі, және де ~15 0 дейін магнит өрісі, Күн дақтар ауданы мен саны өседі (ол Күн белсенділігінің максимумы болып табылады), ал одан соң, ~ 8 0 дейін қозғалғанда, арғы (қарама- қарсы) жартышардың өрісімен әлсізденіп, азаяды (ол КБ-ң келесі минимумы болып табылады). Одан кейін жоғары ендіктерде жаңа циклінің дақтары (азимутал өрістермен бірге) пайда болады. Бұл заңдылықтар тек Күн дақтарына ғана емес, басқа да белсенді аймақтарға жарамды. Әдетте дақтар жалғыз емес, топ- тобымен кездеседі, және де топта олар көбінесе екі - жетекші (батыс) және тұйықтаушы (шығыс) – дақтар айналасында қоюланады. Жетекші және тұйықтаушы дақтардағы магнит өрістер полярлығы қарама- қарсы болады (N(+) және S (-)), және де дақтар үстіндегі белсенді аймақтың құрылымы өрістің күш сызықтары бір дақтан шығып, екінші даққа кіретіндей болатындығын көрсетеді. Бір цикл ішінде бір жартышардағы барлық жетекші дақтар бірдей, басқа жартышардағы жетекші дақтарға қарама- қарсы, үйектелген (полярланған) болады. Бұл екі жартышардағы азимутал өрістің бағыты қарама- қарсы болатындығын көрсетеді. Келесі циклде барлық полярлық керісіншеге ауысады. Американдық астрономдар Бэбкок пен Лейтон түсініктері бойынша, белсенді аймақтардың тұйықтаушы бөліктерінің қалдықтары, ұзақ уақыт жойылмайтын протуберанецтермен бірге, Күннің сәйкес үйектеріне (полюстарына) ығысады да, содағы әлсіз полаидал өрісті теңестіріп, кері таңбалы өрісті түзеді. Үйектік күн магнит өрістері максимал кернеулігіне (~1 Э) күн белсендігі циклінің минимумы қасында жететді де, Күн белсенділігі максимумы кезеңінде жойылып, таңбасын ауыстырады. Сонымен, үйектік аймақтардағы құбылыстардың төмен ендіктердегілерден, белсенді аймақтар қалдықтарының экватор аймақтарынан үйек (полюс) аймақтарына ығысу уақытына байланысты, фаза бойынша артта қалуы байқалады. Мысалы, азимутал өріс таңбасын Күн белсенділігінің минимумында ауыстырса, полаидал (үйектік) өріс таңбасын Күн белсенділігінің максимумында ауыстырады. Паркер түсініктері бойынша таңбасын ауыстырған кезде полоидал өріс жойылмайды, бағытының өзгеруі дипольдің төңкерісі сияқты болады.
Белгілі магнит жағдайына (яғни қаланған жартышардағы азимутал және үйектік (полюстық) магнит өрістерінің белгілі үйектілігіне) қайта келуі 22 жылдан кейін болады, яғни магнит циклінің мерзімі 22 жылдан тұрады.
Мұнда келесіні ескерту керек. 11 жылға тең күн белсенділігі циклінің мерзімі (яғни 22 жылға тең магнит циклінің мерзімі) статистикалық (орташа) мерзімі болып табылады, күн белсенділігінің нақты периоды ~7 жылдан ~15 жылға дейін өзгереді.
3.2.11. Күн тәжінің кеңеюі. Күн желі
Паркер тәждің жоғарыда айтылған жоғары температурасын ескеріп, Күннің гравитациялық өрісіндегі тәж үшін гидродинамикалық теңдеуді шешті. Паркер тәжге екі қарама-қарсы күш әрекет етеді деп есептеді – Күн орталығына бағытталған гравитациялық күш және сыртына бағытталған қысым күші. Әсері болуы мүмкін басқа күштің - жұлдызаралық орта қысымының - Күн қасындағы әсері аталмыш күштерге қарағанда елемейтіндей аз болып қарастырылды (бұл дерек тәжірибемен расталады).
Нәтиже мынадай болып шықты. Тәждің температурасы жоғарыда айтылғандай болса, ол гидростатикалық тепе-теңдік күйде бола алмайды: гравитациялық өрістің қысымы тәждің термодинамикалық қысымын теңестіре алмайды (гравитациялық күш термодинамикалық қысым күшінен әлсіздеу болып шығады), демек, тәж кеңейеді. Паркердің шешуі бойынша (бұл кейін тәжірибемен де расталды) тәж кеңеюі суреттегідей болады, яғни Күн маңында кеңею жылдамдығы
|
3.7 сурет - Изотермалық тәж кеңею жылдамдығының Күн орталығынан қашықтыққа тәуелділігі. RК~0,7*106км.
|
нөлге жақын (ол түсінікті), Күннен кейбір (алыс емес) кризистік қашықтықта vc сындық мәнінен өтеді де, асадыбыстыға жетеді. Сындық нүкте, егер тәж температурасы кейбір GMКm/4kRК, мұндағы m-протонның массасы, -адиабата көрсеткіші, мәнінен аз болса, Күн бетінен жоғары орналасады. Ал тағы бір қашықтықтан бастап vc өзгермейді, дерлік.
Сонымен, Паркер Күннен сыртқа қарай тәж плазмасының үздіксіз ағыны болуға тиісті екендігін көрсетті. Бұл ағын Күн желі деп аталады да, шамамен радиал, бірақ изотропты емес таралады. Эксперимент тәж плазмасының ағындарын екі топқа бөлуге болатындығын көрсетті. Ол баяу ағындар (n~300км/с) және шапшаң ағындар (n~600-700км/с). Күн желі ағындарының бұл екі тобының бар болуын тәждің әртүрлі аймақтарындағы Күн магнит өрісінің әртүрлі геометриясымен түсіндіруге болады. Мысалы, тұтылу кезінде тәждің жасыл сызығының жарығында алынатын кеңістіктік айыруы жоғары суреттер және радио- мен рентген бақылаулары мынаны көрсетті: тәждің тәждік конденсациялары деп аталатын белсенді аймақтары мен барлық дерлік тынық тәждегі зат магнит күш сызықтарының шоқтары болып табылатын тұзақтарда (аркаларда) шоғырланған екен (тынық аймақтардағы тұзақтар айқынсыздау білдірілген). Жоғарыда айтылғандай, магнит өрісі энергияның күш сызықтары бойымен тасымалдануына бөгет болып шықпайды, бірақ өріске көлденең бағыттағы тасымалдау құбылыстарын елеулі түрде қиындатады. Сондықтан тәж затының планета аралық кеңістікке ағылуы қиындаған болады (ол магнит күш сызығына көлденең болады, мысалы, «Күн магнит өрістері» дәрістегі 1 суретті қараңыз).
Бірақ зат планета аралық кеңістікке босанып шығатын мүмкіндіктер де бар екен. Күн тәжінің кейбір аймақтарында тұзақтар жоқ болады. Рентген сәулелердегі жарықтылығы төмендеген болғанына байланысты бұл аймақтарды тәждік жыртықтар (тесіктер) деп атайды. Тәждік жыртықтарға мынау тән:
1) олар фотосфераның униполяр магнит аймақтары үстінен орналасқан, сондықтан магнит күш сызықтары планета аралық кеңістікке шығып, оның Күннен алыс жерінде тұйықталатын ашық магнит құрылымдар болып табылады;
2) тікелей тәждік жыртықтар үстіндегі тәждің тығыздығы көршілес аймақтарға қарағанда шамамен 3 есе төмен;
3)
тәждік жыртықтардың үстіндегі тәждің
температурасы 106
К-ге дейін төмендеген болады (қалыпты
аймақтарда температура
);
4) тәждік жыртықтардағы хромосфера мен тәждің арасындағы өтпелі қабаттың қалыңдығы олардан тыс қалыңдығынан шамамен 3 есе көп.
Соңғы 3 жағдай тәждік жыртықтардан энергия ағылуының екі негізгі механизмдері болып табылатын сыртқа қарай сәулелендірудің және хромосфера мен тәж арасындағы Т температура градиенті арқылы болатын тәжден хромосфераға қайта қарай жылу өткізгіштігінің (тәж хромосферадан ыстық) әлсізденуіне әкеледі. Шынында да, сәулелену қарқындылығы зат тығыздығы кеміген сайын азаяды, жылу өткізгіштігі Т сайын азаяды, ал тәжілік астындағы температура градиенті өтпелі қабат қалыңдығының артқан және тәждік жыртықтардағы температура төмендеген болғанына байланысты (Т=T/x) басқа аймақтардағыдан бірнеше есе аз болады.
Бұнымен бір мезгілде тәжілік жыртықтармен көршілес аймақтарға энергияның келіп түсуі шамамен бірдей. Мұның нәтижесінде түзілетін энергия артығы, тәжілік жыртықтарындағы магнит өрісінің конфигурациясы зат ағып кетуіне кедергі жасамайтындай болғандықтан, жыртықтардан ағып шығатын затпен әкетіледі, яғни күн желін үдетуге жұмсалады деген болжауды жасаұға қисынды.
Бұл болжау тәжірибелік мәліметтермен расталады. Мысалы, Налт және басқалармен 1976 жылғы орындалған күн желінің шапшаң ағындарымен экватор қасындағы тәждік жыртықтар орналасқан жерлерін салыстыру нәтижесінде үш тәждік жыртықтармен байланысты үш жылдамдығы жоғары ағын табылды; тәждік жыртықтар аудандары мен олармен байланысты шапшаң ағындардағы күн желінің максимал жылдамдығы арасындағы корреляция коэффициенті өте жоғары болып шықты (0,96); шапшаң ағындардағы және тәждік жыртықтар негізіндегі магнит өрісінің үйектігі (полярлығы) арасында күткендей корреляция табылды. Келтірілген мәліметтер гелиоэкватор қасындағы тәжідік жыртықтар Жер қасында байқалған Күн желінің шапшаң ағындарының көзі болып табылғандығын растайды. Бұл жерде мынаны айту қызық: 1979 жылы Нойс Күн үйектер (полюстар) қасында ұзақ уақыт ішінде жойылмайтын, ауданы гелиоэкватор қасындағылардан өте көп тәждік жыртықтар байқалатынын ескертіп, жоғары ендіктердегі Күн желі экватордағыдан айтарлықтай шапшаң болуы мүмкін деген болжау жасады. 1990-шы жылдары гелиомагнитсфераның жоғары ендіктерінде ұшқан ULYSSIS деген ғарыш кемесінде алынған нәтижелер бұл болжауды толығымен растады: Күннің үйектік (полюстық) аймақтардан ағып шығатын Күн желінің жылдамдығы өте жоғары болып шықты. (шамамен 700-800 км/с, экваторлық күн желінің орташа жылдамдығы шамамен 400 км/с).
Сонымен күн желінің шапшаң ағындары тәждік жыртықтармен тығыз байланысты екендігі тәжірибе арқылы дәлелденген деп айтуға болады. Баяу ағындар да ауданы аздау тәждік жыртықтардан ағылуы мүмкін. Бірақ, бұл ағындардың магнит өрісінің айтарлықтай тангенциал құраушысы бар аймақтардан ағылуы одан көрі ықтималдау болып көрінеді.
Кеңеюден Күн желінің тығыздығы азаяды, ал жылдамдығы белгілі қашықтықтан бастап дерлік тұрақты қалады, сондықтан күн желінің қысымы күннен қашықтық өскен сайын кемиді де, белгілі бір қашықтықта жұлдызаралық орта қысымымен теңеседі. Бұның нәтижесінде күн желінің кеңеюі тоқталады, және де күн желінің кеңею жылдамдығы аса дыбысты болғандықтан, жұлдыз аралық ортамен шекарада соққы толқын фронты түзіледі. Яғни гелиомагнит сфера деп аталатын күн желімен толтырылған ғарыш кеңістігі аймағының анық шекарасы бар, бұл шекарадан әрі күн желі таралмайды.
