- •1 Тарау
- •1.1. Аспан. Аспан денелерінің көрінетін қозғалыстары
- •1.2. Сфералық геометрияның негізгі ұғымдары. Сфералық үшбұрыштар
- •1.1 Сурет – Сфералық геометрияның негізгі ұғымдары.
- •1.2 Сурет - Сфералық үшбұрыш
- •1.3. Жер пішіні. Географиялық координаттар
- •1.3 Сурет – Географиялық координаттарды анықтау
- •1.5 Сурет – Астрономиялық, геоцентрлік және геодезиялық ендіктерді анықтау
- •1.4. Аспан координаттарының жүйелері
- •1.4.1. Аспан сферасы
- •1.6 Сурет - Аспан сферасы
- •1.4.2. Горизонталды координаттар жүйесі
- •1.7 Сурет - Горизонталды координаттар жүйесі
- •1.4.3. Бірінші экваторлық координаттар жүйесі
- •1.8 Сурет - Экваторлық координаттар жүйелері
- •1.4.4. Екінші экваторлық координаттар жүйесі
- •1.4.5. Эклиптикалық координаттар жүйесі
- •1.4.6. Галактикалық координаттар жүйесі
- •1.10 Сурет - Галактикалық координаттар жүйесі
- •1.5. Шырақтар координаттарының тәуліктік қозғалыс кезіндегі өзгерісі
- •1.15 Сурет – Шырақтардың Жердің солтүстік
- •1.6. Параллакстық үшбұрыш және аспан координаттарын өзара түрлендіру
- •1.16 Сурет – Параллакстық үшбұрыш
- •1.7. Қазіргі заманғы астрометрияда координат жүйелерін анықтау
- •1.8. Каталог дәуірі, стандарт дәуірі, күн мен түннің теңелу дәуірі
- •1.9. Қазіргі заманғы астрометрияда координат жүйелерін жүзеге асыру
- •1.10. Жер қозғалысы
- •1.10.1. Жер осінің прецессиялық және нутациялық қозғалысы
- •1 .18 Сурет – Сфероидтің сыртқы денеге тартылысы (барлық нүктелер мен сызықтар парақ жазықтығында жатыр)
- •1.19 Сурет – Жер осінің прецессиялық қозғалысы
- •1.10.2. Жер осінің прецессиялақ қозғалысының салдарлары
- •1.10.3. Жер полюсінің жер беті бойымен қозғалысы
- •1.21 Сурет - 1995-2000жж. Және 1900-2000 жж. Аралықтарындағы полюстің қозғалысы
- •1.10.4. Жер айналуының бірқалыпсыздығы
- •1 .22 Сурет – 1980-2000 жж. Аралығындағы тәулік ұзақтығының өзгеруі.
- •1.11. Уақытты санау жүйелері
- •1.11.1. Жұлдыздық және күн уақыты
- •1.11.2. Жұлдыздық тәуліктер және жұлдыздық уақыт.
- •1.23 Сурет – Жұлдыздық уақыттың шырақтың тік шарықтауы мен сағаттық бұрышымен байланысы
- •1.11.3. Шын күн тәуліктері мен шын күн уақыты
- •1.19 Сурет - Шын күн тәулігінің бірқалыпсыздығын түсіндіруге
- •1.11.4. Орташа күн тәуліктері және орташа күн уақыты
- •1.20 Сурет – Уақыт теңдеуінің графигі: 1 – уақыт теңдеуі, 2 – центр теңдеуі, 3 – эклиптика көлбеулігінің теңдеуі.
- •1.11.6. Әлемдік уақыт
- •1.21 Сурет - ut1-utc айырмасы; mjd - модификацияланған юлиан күні
- •1.11.7. Жергілікті уақыт және бойлық
- •1.11.8. Белдеулік және декреттік уақыттар
- •1.11.9. Динамикалық уақыт шкалалары
- •1.11.10. Атомдық уақыт шкалалары
- •1.12. Жұлдыздардың аспан сферасындағы орналасуын бұрмалайтын эффектілер
- •1.12.1. Астрономиялық рефракция. Астрономиялық рефракция туралы түсінік
- •1.12.2. Жазық-параллель атмосферадағы оптикалық рефракция
- •1.12.3. Сфералық-симметриялы атмосферадағы оптикалық рефракция
- •1.12.4. Рефракцияның жұлдыздың тік шарықтауы мен еңкеюіне әсері
- •1.12.5. Аберрация мен параллакстық ығысу туралы жалпы түсінік
- •1.12.6. Жұлдыз координаттарының рефракция мен аберрация салдарынан өзгерісінің жалпы формулалары
- •1.12.7. Тәуліктік аберрация
- •1.12.8. Жылдық аберрация
- •1.12.9. Ғасырлық аберрация
- •1.12.10.Планеталық аберрация
- •1.12.11. Тірек көзінің координаттарының Күннің гравитациялық өрісіндегі өзгеруі туралы түсінік
- •1.12.12. Оптикалық бақылауларды редукциялау
- •2 Тарау
- •2.1. Планеталардың көрінетін және нақты қозғалысы
- •2.1.1. Планеталардың көрінетін қозғалысы
- •2.1.2. Птолемейдің әлемдік жүйесі
- •2.1.3. Коперниктің әлемдік жүйесі
- •2.1.4. Планеталардың көрінетін қозғалысы мен конфигурацияларын түсіндіру
- •2.1.5. Планеталар айналуларының синодтық және сидерлік периодтары
- •2.1.6. Кеплер заңдары
- •2.1.7. Кеплердің 1-ші (жалпылама) заңы
- •2.1.8. Кеплердің 2-ші заңы
- •2.1.9. Кеплердің үшінші (түзетілген) заңы
- •2.1.10. Ұйытқыған қозғалыс туралы түсінік
- •2.1.11. Айдың қозғалыс орбитасы және ұйытқуы
- •2.1.12. Айдың көрінетін қозғалысы мен фазалары
- •2.1.13. Ай тұтылуы
- •3 Тарау. Астрофизика элементтері.
- •3.1.1. Астрофизика пәні, негізгі мәселелері
- •3.1.2. Астрофизикада зерттелетін электромагниттік сәулелену аймағы
- •3.1.3. Спектрлік талдау
- •3.1.4. Абсолют жұлдыздық шама
- •3.1.5. Астрофизиканың әдістері мен аспаптары
- •3.2.1. Күн туралы жалпы мәліметтер
- •3.2.2. Күн айналысы
- •3.2.3. Күн құрылысы
- •3.2.4. Күннің ішкі қабаттары
- •3.2.5. Күн ішіндегі конвекция
- •3.2.6. Күн атмосферасы
- •3.2.7. Күн тәжінің қыздырылу механизмдері
- •3.2.8. Плазма қасиеттерін астрофизикалық құбылыстарды түсіндіруге қолдану
- •3.2 Сурет
- •3.3 Сурет
- •3.2.9. Күннің магнит өрісі
- •3.4 Сурет - Фотосфера астындағы жалпы азимутал магнит өрісінің Күн бетіне көтерілу нәтижесінде түзілетін күн дақтарындағы магнит өрістері
- •3.5 Сурет – Күннің ірімасштабты магнит өрісінің осі бойынша симметриялы құраушысы.
- •3.2.10. Күн белсенділігі туралы түсінік. Күн белсенділігінің циклдері
- •3.2.12. Планетааралық магнит өрісі (пмө)
- •3.8 Сурет - Планетааралық магнит өрісінің күш сызығының пішіні.
- •3.3. Күннің радиосәулеленуі
- •3.3.1 Радиожарқылдар, олардың пайда болуы және түрлері
- •3.10 Сурет. Күннің радиожарқылдардың спектрлік классификациясы [3].
- •3.3.2. Радиожарқылдардың сандық классификациясы
- •3.11 Сурет. Жарқылдардың спектрлік классификациясы
- •3.4. Жұлдыздар
- •3.4.1. Қалыпты жұлдыздар
- •3.4.2. Қалыпты жұлдыздардың спектрлері және спектрлік классификациясы
- •3.4.3. Колориметрия негіздері
- •3.4.4. Спектр – жарықтылық (Герцшпрунг-Рассел) диаграммасы
- •3.4.5. Жұлдыздар өлшемдерін анықтау әдістері
- •3.4.6. Радиус-жарықтылық-масса тәуелділігі
- •3.4.7. Жұлдыздар құрылымы және жұлдыздар қойнауындағы физикалық күйлер
- •3.4.8. Қос жұлдыздар
- •3.4.9. Қос жүйелердің жалпы сипаттамалары
- •3.4.10. Визуалды қос жұлдыздар
- •3.4.11. Тұтылған айнымалы жұлдыздар
- •3.4.12. Спектрлі қос жұлдыздар
- •3.4.13. Физикалық айнымалы жұлдыздар
- •3.4.14. Пульсациялаушы айнымалылар
- •3.4.15. Рентген сәулелерінің көздері
- •4 Тарау. Әлем құрылымы (галактикалар)
- •4.1. Жұлдыздар, жұлдыз шоғырлары, галактикалар
- •4.2. Галактикалар түрлерi, олардың қасиеттерi
- •4.3. Галактикалардың белсенді ядролары, квазарлар
- •4.4. Галактикалар шоғырлары. Әлемнің ірімасштабты құрылымдары
- •1 Юлиан күндері, юлиан дәуірлері
- •Пайдаланылған әдебиеттер
- •3.2.12.Планетааралық магнит өрісі (пмө).................................149
3.2.5. Күн ішіндегі конвекция
Конвекция дегеніміз - төменнен көтерілетін жылу ағынының әсерінен болатын ауырлық күштер өрісіндегі сұйықтықтың, не газдың қозғалысы. Көтергіш күш болып Архимед күші (FA=gDrV мұндағы g – еркін түсу үдеуі, Dr - көтеріліп (не түсіп) жатқан V көлем мен қоршаған орта тығыздықтарының айырмасы) табылады. Dr шамасы V көлем мен қоршаған ортаның температура айырмасымен түсіндіріледі. V көлеміндегі зат қоршаған орта затынан ыстығырақ болу керек. Конвекция пайда болу үшін көтеріліп тұрған элементтің температурасының азаюы сол биіктіктерде болатын қоршаған ортаның температура азаюынан баяуырақ болуы қажет, өйткені элементтің температурасы ортаның температурасымен теңессе, бұл екеуінің тығыздығы да теңеседі де, Архимед күші нөлге айналады. Егер элемент пен орта арасында жылуалмасу жүрмесе, онда бұл адиабаттық процесс болады да, конвекция пайда болуы шартын былайша жазуға болады: ÑTад< ÑТ. Бірақ нақты жағдайда ортаның κ жылу өткізгіштігі мен ν тұтқырлығының бар болуына байланысты көтеріліп тұрған элементтің температурасы қоршаған ортаның температурасымен тез теңеседі де, элемент айтарлықтай көтеріліп үлгірмейді. Сондықтан іріауқымдық конвекциялық қозғалыс пайда болу үшін элементтегі және қоршаған ортадағы температуралар айырмасы кейбір шектік мәннен көп болуы қажет. Бұл шарт R > Rс түрінде жазылады, мұндағы өлшемсіз R саны (Рэлей саны) мынаған тең:
,
мұндағы d - қабат қалындығы, b - газ үшін 1/T тең жылулық кеңеюдің көлемдік коэффициенті. Әдетте Rс~103. Конвекция болмаған жағдайда жұлдыздардағы температураның сыртқы градиенті (ÑТ) сәулелі жылу өткізгіштігімен анықталады. Жұлдыз заты иондалмаған болса (толығымен бейтарап болса), әдетте R £ Rс болады да, конвекция байқалмайды. Ал газ иондалу күйін көтерілу барысында айтарлықтай өзгертсе, онда жағдай басқаша болады. Жұлдыздар затының негізгі құраушылары (сутегі мен гелий) жарым-жартылай иондалған болса, көтеріліп, не түсіп жатқан элементтегі температура аз өзгереді екен. Бұл жағдайда көтеріліп тұрған элементтегі температура азаюымен газ рекомбинациясы басталады, ал бұл құбылыс барысында энергия шығарылады. Сол бөлінетін энергия көтеріліп тұрған элементті жылытып, оның температурасын тұрақты дерлік түрде сақтайды. Түсу мен сығылу барысында шығарылатын энергия газдың жылынуына емес, оның иондалуына жұмсалады (бұл энергия жағынан тиімді болады), сондықтан түсіп жатқан элементтегі температура өте баяу өседі. Қарастырылған құбылыс мұздың еруіне ұксайды: мұз (біздің жағдайда – иондалмаған сутегі) бар болғанша судың (бізде – иондалған сутегінің) температурасы өзгермей дерлік, 00С жуық болып қала береді. Мұндай шарттағы ішкі (элементтегі) температура градиенті өте аз болады, сөйтіп атмосферадағы аз температура градиентінің өзі де сыртқы және ішкі температураның жеткілікті айырмасын қамтамасыз етеді, яғни көтергіш күш үлкен болуына әкеледі. Рэлей саны мұндай шарттарда сындық мәннен көп болады да, конвекция басталады. Сутегі мен гелий толығымен иондалған, не бейтарап болған кезде конвекция тоқтайды. Сонымен, Күннің және Күн үлгісіндегі жұлдыздардың конвекциялық алқабы – жарым-жартылай иондалған сутегі мен гелийдің алқабы.
