Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Учебное пособие, Биологическая химия. ч.1.doc
Скачиваний:
1
Добавлен:
01.07.2025
Размер:
3.28 Mб
Скачать

Кротонил-апб бутирил-апб

Первый из серии циклов заканчивается образованием бутирил-АПБ. Перед вторым циклом радикал бутирила пе­реносится из позиции 2 в позицию 1 (где нахо­дился ацетил в начале первого цикла реакций). Затем остаток бутирила подвергается тем же превращениям (начиная с реакции конденсации) и удлиняется на 2 углеродных атома, происходящих из малонил-КоА. В каждом цикле малонил-S-АПБ связывается с концевым углеродным атомом растущей цепи жирной кислоты с одновременным высвобождением CO2 и HS~АПБ при действии фермента β-кетоацил-АПБ-синтетазы.

Аналогичные циклы реакций повторяются до тех пор, пока не образуется радикал пальмити­новой кислоты, который под действием тиоэстеразного центра гидролитически отделяется от ферментного комплекса, то есть происходит деацилирование – высвобождение свобод­ной пальмитиновой кислоты при действии гидролитического фермента ацилгидролазы (рис.15).

В каждом цикле биосинтеза пальмитиновой кислоты проходят 2 реакции восстановления, донором водорода в которых служит кофермент НАДФH, восстановление которого происходит в реакциях:

• дегидрирования в окислительных стадиях пентозофосфатного пути катаболизма глюкозы;

• дегидрирования малата;

•дегидрирования изоцитрата цитозольной НАДФ-зависимой дегидрогеназой.

Рис.15. Общая схема реакций синтеза пальмитиновой кислоты

Суммарное уравнение реакции образования пальмитиновой кислоты при участии синтазы имеет следующий вид:

Ацетил-КоА + 7 Малонил-КоА + 14 НАДФН + 14Н+

→ СН3(СН2)14СООН + 7СО2 + 8НS~КоА + 14 НАДФ+ + 6Н2О

Для образования жирной кислоты с n числом атомов углерода, необходимо пройти (n/2 - 1) циклов.

Объединение всех ферментов синтеза высших жирных кислот в единый полиферментный ансамбль обеспечивает высокую эффек­тивность работы синтазы: одновременно в пределах одного димера образуются две молекулы высшей жирной кислоты.

Основные стадии биосинтеза высших жирных кислот в организ­ме представлены на рис. 16.

Долгое время считалось, что печень является единственным органом, где проис­ходит синтез жирных кислот (ЖК). В настоящее время установлено, что синтез ЖК имеет место также в стенке кишечника, в легочной ткани, в жировой ткани, в ткани мозга, в почках, в костном мозге, в лактирующей молочной железе и даже в сосудистой стенке. Он протекает в цитозоле клетки. Характерно, что в цитозоле печеночных клеток синтезируется главным образом пальмитиновая кислота.

Рис.16. Механизм биосинтеза высших жирных кислот

Г. Удлинение цепи и образование двойных связей в молекулах вжк

Удлинение жирных кислот на основе пальмитиновой кислоты проиходит с учас­тием малонил-КоА. Последовательность реакций сходна с той, что происходит при синтезе пальмитиновой кислоты; однако в данном случае жирные кислоты связаны не с синтетазой жирных кислот, а с коферментом А. Фер­менты, участвующие в элонгации, могут ис­пользовать в качестве субстратов не только пальмитиновую, но и другие жирные кис­лоты; поэтому в организме мо­гут синтезироваться не только стеариновая кислота, но и жирные кислоты с большим числом атомов углерода.

Основной продукт элонгации в печени - сте­ариновая кислота (С 18:0), однако в ткани мозга образуется большое количество жир­ных кислот с более длинной цепью - от С20 до С24, которые необходимы для образова­ния сфинголипидов и гликолипидов. Оксидазы со смешанными функциями гидроксилируют С22 и С24 кислоты с образовани­ем лигноцериновой и цереброновой кислот, обнаруживаемых только в липидах мозга.

Включение двойных связей в радикалы жирных кислот называется деса-турацией. Основные жирные кислоты, об­разующиеся в организме человека в резуль­тате десатурации - пальмитоолеиновая и олеиновая.

Ферменты десатуразы жир­ных кислот, имеющиеся в организме чело­века, не могут образовывать двойные связи в радикалах жирных кислот дистальнее де­вятого атома углерода, то есть между девятым и метильным атомами углерода. Поэтому жир­ные кислоты семейства ω-3 и сω-6 не синте­зируются в организме, являются незамени­мыми и обязательно должны поступать с пищей, так как выполняют важные регуляторные функции.

Для образования двойной связи в радикале жирной кислоты требуется молекулярный кислород, НАДH + Н+, цитохром b5 и ФАД-зависимая редуктаза цитохрома b5. Атомы водо­рода, отщепляемые от насыщенной кислоты, выделяются в виде воды. Один атом молеку­лярного кислорода включается в молекулу воды, а другой также восстанавливается до воды с участием электронов НАДH + Н+, которые передаются через ФАДH2 и цитохром b5.

Образова­ние высших жирных кислот путем удлинения цепи происходит в митохондриях и микросомах клетки.

Жирные кислоты с разветвленной углеродной цепью синтезируются из продуктов метаболизма аминокислот с разветвленной цепью (валин, изолейцин и лейцин) через ацильные производные КоА путем удлинения цепи и при участии АПБ. Особенности биосинтеза полиненасыщенных жирных кислот представляют интерес в связи с их витаминоподобными функциями. Некоторые полиеновые кислоты могут синтезироваться из олеиновой кислоты с помощью ряда последовательных реакций. Однако, синтез полиеновых ненасыщенных кислот, содержащих двойные связи, расположенные между конечным метилом и седьмым атомом углерода, невозможен, поэтому они и являются незаменимыми в пищевом рационе.

В таблице 3 представлена сравнительная характеристика процессов β-окисления и биосинтеза жирных кислот.

Таблица 3