- •1 Предмет генетики
- •3 Значение генетики для практики
- •4 Этапы развития генетики
- •5 Виды изменчивости
- •6 Методы изучения изменчивости.
- •7 Типы распределения
- •8 Изучение связи между признаками
- •9 Статистические показатели для характеристики совокупности
- •10 Строение клетки
- •11)Морфологическое строение хромосом
- •12) Кариотип
- •13)Док-во днк в наследственности.
- •14)Биологическая роль нуклеиновых кислот
- •15) Химический состав нуклеиновых кислот
- •16)Строение и типы рнк
- •17)Генетический код и его свойство
- •18.Синтез белка в клетке
- •19)Современное представление о гене как единице наследственности
- •20)Хромосомные мутации
- •26. Взаимодействие аллельных генов
- •27. Взаимодействие неаллельных генов
- •32. Нарушение в развитии пола
- •33. Наследование признаков, сцепленных с полом
- •35. Наследование групп крови и значение для практики
- •38. Регуляция работы генов у прокариот
- •39. Регуляция работы генов у эукариот
- •32. Нарушение в развитии пола
- •33. Наследование признаков, сцепленных с полом
- •35. Наследование групп крови и значение для практики
- •38. Регуляция работы генов у прокариот
- •39. Регуляция работы генов у эукариот
- •32. Нарушение в развитии пола
- •33. Наследование признаков, сцепленных с полом
- •35. Наследование групп крови и значение для практики
- •38. Регуляция работы генов у прокариот
- •39. Регуляция работы генов у эукариот
- •44.Аномалии сх животных и профилактика их распространения
- •45.Популяция и чистая линия
- •46. Закон Харди – Вайнберга
- •48. Транскрипция, терминатор, трансляция, промотор.
- •49. Экзоны, интроны, терминация, процессинг, сплайсинг.
- •50. Генная инженерия
- •46. Закон Харди – Вайнберга
- •48. Транскрипция, терминатор, трансляция, промотор.
- •49. Экзоны, интроны, терминация, процессинг, сплайсинг.
- •50. Генная инженерия
17)Генетический код и его свойство
Генети́ческий код — свойственный всем живым организмам способ кодирования аминокислотной последовательности белков при помощи последовательностинуклеотидов.
В ДНК используется четыре азотистых основания — аденин (А), гуанин (G), цитозин (С), тимин (T), которые в русскоязычной литературе обозначаются буквами А, Г, Ци Т. Эти буквы составляют алфавит генетического кода. В РНК используются те же нуклеотиды, за исключением нуклеотида, содержащего тимин, который заменён похожим нуклеотидом, содержащим урацил, который обозначается буквой U (У в русскоязычной литературе). В молекулах ДНК и РНК нуклеотиды выстраиваются в цепочки и, таким образом, получаются последовательности генетических букв.
Свойства:
Триплетность — значащей единицей кода является сочетание трёх нуклеотидов (триплет, или кодон).
Непрерывность — между триплетами нет знаков препинания, то есть информация считывается непрерывно.
Неперекрываемость — один и тот же нуклеотид не может входить одновременно в состав двух или более триплетов (не соблюдается для некоторых перекрывающихся генов вирусов, митохондрий и бактерий, которые кодируют несколько белков, считывающихся со сдвигом рамки).
Однозначность (специфичность) — определённый кодон соответствует только одной аминокислоте (однако, кодон UGA у Euplotes crassus кодирует две аминокислоты — цистеин и селеноцистеин)[11]
Вырожденность (избыточность) — одной и той же аминокислоте может соответствовать несколько кодонов.
Универсальность — генетический код работает одинаково в организмах разного уровня сложности — от вирусов до человека (на этом основаны методыгенной инженерии; есть ряд исключений, показанный в таблице раздела «Вариации стандартного генетического кода» ниже).
Помехоустойчивость — мутации замен нуклеотидов, не приводящие к смене класса кодируемой аминокислоты, называют консервативными; мутации замен нуклеотидов, приводящие к смене класса кодируемой аминокислоты, называют радикальными.
Знаки препинания — триплеты выполняют функцию знаков препинания.
18.Синтез белка в клетке
Биосинтез белков идет в каждой живой клетке. Наиболее активен он в молодых растущих клетках, где синтезируются белки на построение их органоидов, а также в секреторных клетках, где синтезируются белки-ферменты и белки-гормоны.
Основная роль в определении структуры белков принадлежит ДНК. Отрезок ДНК, содержащий информацию о структуре одного белка, называют геном. Молекула ДНК содержит несколько сотен генов. В молекуле ДНК записан код о последовательности аминокислот в белке в виде определенно сочетающихся нуклеотидов. Код ДНК удалось расшифровать почти полностью. Сущность его состоит в следующем. Каждой аминокислоте соответствует участок цепи ДНК из трех рядом стоящих нуклеотидов.
Например, участок Т—Т—Т соответствует аминокислоте лизину, отрезок А—Ц—А — цистину, Ц—А—А — валину н т. д. Разных аминокислот — 20, число возможных сочетаний из 4 нуклеотидов по 3 равно 64. Следовательно, триплетов с избытком хватает для кодирования всех аминокислот.
Синтез белка — сложный многоступенчатый процесс, представляющий цепь синтетических реакций, протекающих по принципу матричного синтеза.
