Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1_OTREDAKTIROVANO_Shpory_k_GOSEKZAMENAM.docx
Скачиваний:
4
Добавлен:
01.07.2025
Размер:
4.05 Mб
Скачать
    1. Низкотемпературное хранение суг.

Хранение СУГ в низкотемпературных изотермических (стальных, железобетонных, ледопородных) емкостях получило широкое применение. Это объясняется высокой эффективностью таких резервуаров. Отметим, что хранить сжиженный метан или природный газ можно только в низкотемпературных хранилищах (рис. 11.6). Изотермическое хранение сжиженных углеводородных газов при давлениях, незначительно отличающихся от давления внешней среды, имеет преимущества вследствие меньших затрат металла, меньшей территории, занимаемой хранилищем, и большей безопасности хранений. Постоянное низкое давление сохраняется путем откачки паров сжиженных углеводородных газов для использования в газораспределительной сети или повторного сжижения паров. Температура хранения жидкого пропана при изменении давления от 2000 до 15000 Па по сравнению с атмосферным колеблется в пределах 2°С, н-бутана - в пределах 4°С, изо-бутана в пределах 12 °С.Толщину стенки хранилища определяют из условия искусственного охлаждения сжиженного газа, подлежащего хранению, до температуры, при которой давление его насыщенных паров будет близко к атмосферному давлению.

Большое преимущество хранения газа в изотермических резервуарах - их независимость от местных геологических условий. В то же время при сооружении подземных хранилищ природного газа, используемых с указанной целью, в настоящее время приходится изыскивать специальные геологические структуры (выработанные и водоносные пласты и пр.). Поэтому хранилища СУГ могут быть созданы практически в любом месте, где это представляется технологически необходимым и экономически выгодным.

Металлические теплоизолированные резервуары

Большое распространение при сооружении хранилищ СУГ получили металлические резервуары. Это объясняется хорошей изученностью работы листовых конструкций в области криогенных температур и их надежностью, наличием стали и алюминиевых сплавов, отвечающих требованиям работы при температуре 111 К, возможностью контроля сварных соединений и испытания конструкций в целом, а также наличием эффектив­ных теплоизоляционных материалов и отработанных методик по определению скорости испарения продукта. К преимуществам металлических резервуаров следует отнести возможность их строительства, независимо от мест расположения, а также то, что благодаря надежной герметичности резервуара можно гарантировать отсутствие утечек и образование взрывоопасных смесей.

Наземные низкотемпературные резервуары начали использовать раньше резервуаров других типов, этим и объясняется их широкое распространение (более 80%). Чаще они цилиндрической формы, так как сферические более сложны в изготовлении. Изотермический резервуар должен удовлетворять следующим требованиям:

материал для его изготовления должен обладать хорошими механическими свойствами при низкой температуре;

обладать удобной для монтажа, прочной и надежной в эксплуатации конструкцией;

характеризоваться невысокими потерями сжиженного газа при испарении вследствие теплопритока и обеспечивать длительное и безопасное хранение;

отличаться невысокой стоимостью изготовления.

Потери сжиженного газа могут быть оценены с помощью коэффициента потерь, который показывает долю испарившегося газа из полностью заполненного сжиженным газом резервуара в течение 24 ч. Коэффициент потерь на испарение не должен превышать 0,05 %.

Наземный низкотемпературный резервуар состоит из перекрытия, стен, фундамента, герметизирующей оболочки и теплоизoляции Наземный резервуар обычно состоит из двух самостоятельных оболочек: внутренней (несущей и герметизирующей) и наружной, играющей роль защитного кожуха. Внутреннюю оболочку изготавливают из алюминиево-магниевогo сплава или легированной стали.

При проектировании и сооружении низкотемпературных резервуаров возникает ряд задач: выбор материала для резервуара, теплоизоляция резервуара, сооружение фундамента под резервуар, безопасная эксплуатация хранилища жидкого газа. Для сооружения самого резервуара требуются материалы (металлы), обеспечивающие необходимые механические свойства в условиях низкой температуры. Для изготовления емкости, работающей при минимальной температуре 173 К, применяют углеродистую сталь, содержащую 3,5 % никеля, с пределом текучести не менее 840 МПа; при 73 К - углеродистую сталь, содержащую 9 % никеля, с пределом текучести темпера тур от 153 до 173 К, необходимой вязкостью обладают стали с содержанием 5—6 % никеля.

Для сооружения внутренней оболочки изотермических резервуаров широко используют алюминиевые сплавы. Они обладают достаточной прочностью, имеют высокую теплопроводность (в 5 раз больше теплопроводности других металлов), обладают незначительной плотностью и высокой коррозионной устойчивостью, а также легко поддаются механической обработке и сварке. Внешнюю защитную оболочку газгольдера выполняют из углеродной стали; она должна быть герметична и защищать теплоизоляцию от увлажнения. Для этого листы оболочки, толщина которых 6…8 мм, следует сваривать с двух сторон, поэтому расстояния между наружной и внутренней оболочками газгольдера принимают не менее 750 мм. Очень важно правильно выбрать и теплоизоляцию резервуара. Основное требование, предъявляемое к теплоизоляции, низкая теплопроводность. В настоящее время резервуары с двойной стенкой обычно теплоизолируют перлитом, засыпанным в пространство между стенками. Одностенные резервуары изолируют блоками пеностекла или непосредственным напылением, денополиуретана.

При сооружении стальных низкотемпературных резервуаров важное значение имеет их правильная опора на грунт. Глубина промерзания грунтов под резервуарами зависит от температуры хранимого сжиженного газа и температуры грунта, диаметра резервуара, коэффициента теплопередачи изоляции и коэффициента теплопроводности грунта. Крупнозернистые грунты (гравий, песок) не чувствительны к промерзанию. При замерзании они увеличивают свой объем приблизительно на 9 %. При отсутствии систем капилляров такие грунты не способны подсасывать дополнительную влагу из соседних пластов, и, даже несмотря на образование ледяных линз, вспучивания, как правило, не наблюдается. Связанные грунты (суглинки, илы, глины, а также гравий и песок в плотной смеси с суглинками) чувствительны к действию холода. Из-за разветвленной капиллярной системы влага подтягивается к ядру замерзания из со­седних пластов, что ведет к вспучиванию грунта, при котором возможен подъем и потеря устойчивости даже очень тяжелых сооружений. Прежде чем рассчитывать основание, определяют, необходимо ли предотвратить проникновение холода в грунт, находящийся под основанием. Иногда предусматривается система обогрева под днищем резервуара или специальная конструкция фундамента с вентиляционными каналами. В резервуаре без изоляции днища глубина промерзания

,

где R - радиус резервуара; Тгр - температура грунта (для умеренного климата принимается 283 К); Тхр - температура хранящегося сжиженного газа.

Так, например, для резервуара диаметром 20 м глубина промерзания при хранении сжиженного природного газа достигает 110 м.

Теплоизоляция днища резервуара предотвращает непосредственное проникание холода в грунт. В этом случае глубина промерзания значительно меньше

,

где Тиз - температура на уровне изоляции.

Изотермические резервуары для сжиженных газов должны быть оснащены средствами контроля и автоматизации, с помощью которых обеспечивается измерение необходимых параметров (расхода и поступления продукта, давления, температуры и уровня); сигнализация о давлении и уровне, а также для поддержания заданного эксплуатационного режима и защиты резервуара от переполнения, повышения уровня, вакуума, для измерения напряжений в корпусе хранилища. На трубопроводах для входа и выхода продукта из резервуара следует устанавливать соответствующие счетчики - расходомеры. Резервуар должен быть снабжен уровнемером, позволяющим в любой момент времени определить уровень жидкости в сосуде. продувочного азота или другого инертного газа в межстенное пространство либо во внутренний сосуд резервуара, поступления паров хранимого продукта для гашения вакуума. Все вводы в резервуар и выводы из него должны быть снабжены компрессорами температурных напряжений, рассчитанными на работу в условиях максимально возможной разности температур хранимого продукта и окружающей среды.

Схема изотермического хранилища с использованием в качестве холодильного агента самого сжиженного углеводородного газа изображена на рис. 11.8. Испаряющийся из теплоизолированного резервуара 1 пар через теплообменник 7 поступает в компрессор 4, где сжимается до 0,5…1,2 МПа (в зависимости от термодинамических свойств хранимого газа), затем подается в холодильник-конденсатор 5, где охлаждается водой 6 и конденсируется при неизменном давлении. Сконденсированный сжиженный углеводородный газ 2 дополнительно переохлаждается встречным потоком газа в теплообменнике 7, дросселируется в вентиле 3 до давления, соответствующего режиму хранения и подается снова в резервуар 1.

Рис. 11.8. Схема поддержания низкотемпературного режима сжиженного газа в резервуаре

Рис. 11.9. Технологическая схема перевалочной базы СУГ с изотермическим хранилищем с буферными емкостями:

1 - слив СУГ из железнодорожных цистерн; 2 - буферные емкости; 3 - блок осушки;. 4 - изотермический резервуар; 5 - компрессорно-холодильная установка; 6 - слив и подогрев СУГ; 7 - залив СУГ в танкер; 8 - заправка баллонов; 9 - налив автоцистерн

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]