- •1.Классификация магистральных нефтепроводов и газопроводов Классификация нефтепроводов сп 36.13330.2012
- •2. Системы перекачки
- •3. Характеристики насосов, насосных станций и трубопровода. Совмещённая характеристика.
- •Совмещенная характеристика
- •4. Уравнение баланса напоров.
- •Формулы для гидравлического расчета нефтепровода.
- •Потери напора на трение в тп опр-т по формуле Дарси-Вейсбаха
- •5. Определение необходимого числа насосных станций
- •6. Определение наличия перевальных точек по трассе нефтепровода
- •7. Расчет трубопроводов при заданном расположении насосных станций
- •8.Расчет коротких трубопроводов
- •9. Нефтепроводы со сбросами
- •10 Регулирование режима работы насосных станций.
- •1Изменение параметров нпс:
- •2Изменение параметров тр-да
- •Методы, связанные с изменением параметров трубопровода:
- •11. Основные формулы для гидравлического расчета газопровода
- •12. Температурный режим газопровода
- •13. Изменение давления по длине гп. Среднее давление.
- •Среднее давление в газопроводе
- •14. Определение зоны возможного гидратообразования в гп.
- •15. Защита трубопроводов от коррозии
- •16. Целесообразность последовательной перекачки
- •17. Приближенная теория смесеобразования
- •18. Влияние различных факторов на процесс смесеобразования и борьба с ним
- •Влияние скорость перекачки
- •Влияние остановок перекачки
- •Влияние конструктивных особенностей обвязки перекачивающих станций
- •Влияние объема партий перекачиваемых жидкостей
- •Влияние соотношения вязкостей жидкостей
- •19. Прием и реализация смеси на конечном пункте трубопровода
- •Прием всей смеси в один резервуар
- •Деление смеси пополам
- •Прием всей смеси в один чистый нефтепродукт
- •Деление смеси на три неравные части
- •20. Особенности гидрав-го расчета при последовательной перекачке Определение числа перекачивающих станций
- •Определение числа циклов последовательной перекачки
- •Определение необходимого объема резервуарной емкости
- •21. Изменение давления нпс и расхода при замещении одного нефтепродукта другим.
- •Изменение давления на выходе перекачивающей станции
- •Изменение давления в линейной части трубопровода
- •22. Контроль за последовательной перекачкой
- •Контроль смеси по изменению плотности
- •Контроль смеси по скорости распространения ультразвука
- •Контроль смеси по оптической плотности
- •Контроль смеси с помощью индикаторов
- •23. Реологические свойства вязких и застывающих нефтей
- •24. Способы перекачки вязких и застывающих нефтей
- •Гидроперекачка
- •Перекачка с предварительным улучшением реологических свойств нефтей за счет механического воздействия
- •25. Исходные данные для теплового и гидрав-го расчета
- •26. Тепловой расчёт горячих трубопроводов
- •27. Гидравлический расчет горячих трубопроводов
- •28. Оптимальная температура подогрева
- •29. Прогрев горячих тп перед пуском
- •30. Замещение высоковязких нефтей маловязкой жидкостью при остановках горячей перекачки.
- •31. Трубопроводный транспорт нефти и газа в двухфазном сост-и
- •32. Трубопроводный транспорт газонасыщенных нефтей
- •33 Трубопроводный транспорт твёрдых и сыпучих материалов.
- •34. Очистка трубопровода от отложений парафина.
- •35. Нагрузки и воздействия Расчет толщины стенки трубопровода.
- •36. Проверка трубопровода на прочность и деформацию
- •37. Разделение т/п и их лч на категории.
- •38. Очистка внутренней полости и испытание т/п после сооружения
- •39. Подводные переходы (подготовительные работы, способы пригрузки, расчет устойчивости).
- •40. Проверочный расчет фундаментов под основное оборудование на статические и динамические нагрузки.
- •41 Выверка оборудования при его монтаже на фундаменте
- •Установочными болтами: Более эффективным способом выверки в вертикальной плоскости является бесподкладочный (с помощью установочных болтов).
- •42 Монтаж подшипников агрегатов.
- •Подшипники скольжения.
- •Подшипники качения.
- •43. Центровка полумуфт и валов агрегатов по полумуфтам.
- •2) По полумуфтам при помощи двух радиальных стрелок (рис.3, б):
- •44. Пусконаладочные работы Правила технической эксплуатации и требования безопасности труда в газовом хозяйстве Российской Федерации:
- •45. Сварочно-монтажные работы при сооружении мт
- •1Ручная электродуговая сварка
- •Допустимая плотность тока при ручной электродуговой сварке, а/мм2
- •2Механизированная электродуговая сварка
- •46, Контроль формы резервуара после монтажа. Испытание резервуара.
- •47 Классификация аварий на мт и мг. Виды отказов.
- •48 Контроль изоляционных покрытий магистрального трубопровода.
- •49Полистовой метод монтажа резервуаров
- •50 Капитальный ремонт линейной части трубопроводов (подготовительные, виды и схемы ремонта трубопроводов). Последовательность операции при ремонте.
- •51 Ликвидация аварий на трубопроводах.
- •52 Ремонт основного технологического оборудования нс (дефекты и ремонт цбн).
- •53 Ремонт фундаментов под резервуары.
- •54 Ремонт днища резервуара
- •55 Ремонт корпуса и крыши рвс
- •56Типы и категории нб и технологические операции, проводимые на них Основные сведения по нб
- •Типы, группы и категории нб
- •Технологические операции нб
- •57 Определение потерь напора в напорных трубопроводах нб
- •58. Расчет сифонных трубопроводов
- •59.Определение необходимой емкости резервуарного парка нб
- •60.Классификация резервуаров. Конструкция резервуаров типа рвс
- •Стальные резервуары низкого давления
- •Вертикальные стальные цилиндрические резервуары
- •61.Приемо-раздаточное оборудование резервуаров
- •62.Дыхательная арматура резервуаров
- •63.Замерное оборудование резервуаров
- •64.Трубопроводы нефтебаз и трубопроводная арматура
- •65.Железнодорожные тупики, эстакады, цистерны и сливо-наливные устройства
- •Сливные устройства
- •Способы слива/налива нефтепродуктов
- •66.Нефтяные гавани, причальные сооружения, нефтеналивные суда и устройства Нефтеналивные суда
- •67.Виды потерь н/пр от испарения из резервуаров Источники и классификация потерь н/пр и нефтей
- •Об испаряемости н/пр и нефтей
- •Потери от испарения, вызванные малым дыханием резервуара
- •Потери, обусловленные большими дыханиями резервуара
- •Определение потерь при обратном выдохе
- •Мероприятия по сокращению потерь н/пр и нефтей от испарения
- •68.Технические мероприятия по сокращению потерь от испарения из резервуаров
- •Применение понтонов
- •69. Назначение и способы подогрева н/пр в резервуарах, транспортных емкостях и трубопроводов Использование тепла на нб
- •Теплоносители и источники тепла
- •Способы и средства подогрева в резервуара
- •Способы и средства подогрева транспортных емкостей
- •Средства и способы подогрева технологических тп и арматуры
- •70.Определение вероятной температуры н/пр в конце хранения или транспортировки
- •Расчет трубчатых подогревателей
- •Расчет электроподогревателей
- •71. Расчетные часовые расходы газа. Коэффициент часового максимума. Коэффициент одновременности.
- •72 Методы расчета тупиковой газораспределительной сети
- •73 Метод «предельной выгоды» при расчете диаметров тупиковой сети.
- •74 Принцип расчета кольцевых сетей
- •75 Методика гидравлической увязки кольцевой сети
- •76 Регуляторы давления газа. Классификация регуляторов давления
- •77 Расчет пропускной способности регуляторов давления
- •79. Схема и принцип действия рдук-2
- •80Температурный режим грс.Борьба с гидратообраз-ем наГрс.
- •81 Состав сжиженных углеводородных газов
- •82. Железнодорожные цистерны. Ж.Д транспорт суг
- •83 Хранение суг. Классификация хранилищ суг
- •84 Емкости для хранения суг под давлением.
- •Низкотемпературное хранение суг.
- •86 Технологическая схема пхг
- •87 Характеристика сточных вод нб и пс и их загрязнений
- •88 Методы, процессы и средства очистки нефтесодержащих сточных вод
- •89 Сооружения механической очистки сточных вод
- •90 Сооружения физико-химической очистки сточных вод Флотационные установки
- •91 Сооружения биологической очистки сточных вод
- •92 Вспомогательные устройства в комплексе очистных станций
- •Буферный резервуар
- •Шламонакопители
- •93 Принципиальная схема очистного комплекса
- •94 Закономерности и расчет разбавления сточных вод в реках
- •95 Локализация места аварий на воде и на почве
- •Пример бонового заграждения морского ведомства
- •96 Сбор нефти с поверхности воды
- •97 Сбор нефти с поверхности почвы
- •98 Рекультивация земель
- •99 Классификация нс и кс. Размещение основных объектов на территории
- •100 Основное оборудование нс
- •101 Основное оборудование кс
- •102 Технологическая схема нс
- •103 Технологическая схема кс
- •104 Вспомогательное оборудование насосного цеха
- •105 Вспомогательное оборудование компрессорного цеха (маслоснабжение, уплотнения и т.Д)
- •106 Учет нефти и нефтепродуктов
- •107 Системы водоснабжения нс и кс
- •I. Основные сведения по системам водоснабжения
- •1.1. Источники водоснабжения
- •2. Расчет водопотребления
- •2.1. Хозяйственно-питьевое потребление
- •2.2.1. Оборотное водоснабжение
- •2,3 Противопожарное водопотребление
- •5. Гидравлический расчет водопроводных сетей и водоводов
- •49. Полистовой метод монтажа резервуаров.
76 Регуляторы давления газа. Классификация регуляторов давления
Управление гидравлическим режимом работы системы газоснабжения осуществляют с помощью регуляторов давления, которые автоматически поддерживают постоянное давление в точке отбора импульса независимо от интенсивности потребления газа. При регулировании давления происходит снижение начального, более высокого, на конечное (более низкое),
Рис. 3.1. Схема регулятора давления
1 - регулирующий (дроссельный) орган; 2 - мембранно-грузовой привод;
3 - импульсная трубка; 4 - объект регулирования – газовая сеть
Автоматический регулятор давления состоит из регулирующего и реагирующего устройства. Основной частью реагирующего устройства является чувствительный элемент (мембрана), а основной частью регулирующего устройства – регулирующий орган (у регуляторов давления дроссельный орган). Чувствительный элемент и регулирующий орган соединяются между собой исполнительной связью.
Регулятор давления будет находиться в равновесии, если алгебраическая сумма сил, действующих на клапан, равна нулю (т.е. силы, действующие на клапан, сбалансированы Ni=0). В этом случае регулятор будет пропускать в объект постоянное количество газа Mп=const. Если баланс сил нарушается, т.е. Ni0, то клапан перемещается в сторону действия больших сил, изменяя приток газа Мп.Таким образом, равновесие объекта обеспечивают условием Мп=Мс, а равновесие регулятора - условием Ni=0.Рассмотрев условия равновесия объекта и регулятора, проследим процесс регулирования во времени.
Предположим, что объект и регулятор находятся в равновесии. В момент 0 (рис.3.2) резко увеличилось потребление газа (включился крупный потребитель, Мс стало больше Мп). Равновесие объекта нарушилось, отбор газа стал больше его поступления в сеть, давление p2 и в сети понизилось. С уменьшением давления p2 нарушился баланс сил, действующих на клапан и под действием груза клапан стал опускаться, увеличивая приток газа в сеть (см. кривые изменения притока и давления газа р2 за четверть периода 1-0 на рис. 3.2).
Рис.3.2. График астатического регулирования при отсутствии самовыравнивания
К моменту 1 приток стал равным стоку и объект снова пришел в равновесие. Но за время 1-0 сток газа был больше его притока,. и количество газа в сети все время уменьшалось, а давление P2 падало.
Количество газа, отобранного из трубопровода за время 1-0, равно площади 1 (см. рис. 3.2). В момент 1 давление газа p2 перестает падать, но остается ниже давления p02, на которое настроен регулятор и при котором он находится в равновесии. Поэтому несмотря на то что объект пришел в равновесие, регулятор продолжает работать: его клапан открывается, приток газа увеличивается и становится больше стока. В результате регулятор выводит объект из равновесия. За вторую четверть периода 2-1 приток все время превосходит сток, количество газа в газопроводе увеличивается и его давление растет. Наконец, в момент 2 убыль газа за первую четверть периода полностью компенсирована его дополнительной подачей и давление газа р2 делается равным давлению, на которое настроен регулятор. Регулятор приходит в равновесие, но в этот момент приток больше стока (Мп>Мс), объект не находится в равновесии, давление газа р2 делается больше давления настройки регулятора и объект выводит его из равновесия. Клапан регулятора изменяет направление движения на обратное, и он начинает закрываться.С момента 2 процесс регулирования повторяется, но в противоположном направлении. Таким образом, если регулятор настроен на определенное давление р02 и действующий импульс на регулятор пропорционален отклонению р2 от р02, процесс регулирования представляет собой периодический незатухающий процесс.
Регуляторы, работающие по рассмотренному принципу, называются астатическими. Эти регуляторы после возмущения приводят регулируемое давление к заданному значению независимо от величины нагрузки и положения регулирующего органа. Таким образом, равновесие системы при астатическом регулировании может наступить только при заданном значении регулируемого параметра, причем регулирующий орган может занимать любое положение.Зона нечувствительности, люфты, трение в сочленениях и другие конструктивные недостатки регуляторов могут привести к тому, что колебательный процесс регулирования станет расходящимся, а регулирование – неустойчивым. Для стабилизации процесса, т. е. превращение его в затухающий, в регулятор вводят стабилизирующие устройства, в частности, жесткую обратную связь. Такое регулирование называют статическим.
2
Рис. 3.3. Статический регулятор давления
1 - регулирующий (дроссельный) орган; 2 - мембранно-пружинный привод;
3 - импульсная трубка; 4 - объект регулирования – газовая сеть
Рис. 3.4. График статического регулирования при отсутствии самовыравнивания
а - график регулирования; б - статическая характеристика регулятора
Рассмотрим процесс регулирования, протекающий во времени. Предположим, что до времени 0 система (объект – регулятор) находилась в равновесии. В момент 0 резко возрос сток газа. Давление в объекте стало падать (см. рис.3.4, а), но с увеличением расхода понизилось также и давление, на которое настроен регулятор (см. рис. 3.4, б), и в момент 2 объект и регулятор снова вошли в равновесие. Таким образом, переходный процесс превратился из колебательного в апериодический. Статическая характеристика, изображенная на рис. 3.4, б, является очень крутой, а ее неравномерность р составляет большую величину.
Обычно регуляторы конструируют с небольшой неравномерностью. В таком случае процесс регулирования будет не апериодическим, а колебательным (затухающим).
Регуляторы давления бывают: прямого и непрямого действия, а также промежуточного типа.
У регуляторов прямого действия регулирующий орган (клапан) перемещается усилием, возникающим в его чувствительном элементе (мембране) без использования энергии от постороннего источника. У таких регуляторов силовой элемент привода является одновременно и чувствительным элементом. Регуляторы прямого действия не имеют усилителей. Они просты по конструкции, надежны в работе и нашли широкое применение в системах газоснабжения.
У регуляторов непрямого действия усилие, возникающее в чувствительном элементе, приводит в действие управляющий элемент, который открывает доступ энергии постороннего источника (сжатого воздуха, газа и др.) в сервомотор, а последний развивает усилие, необходимое для перемещения регулирующего органа. Регуляторы этого типа всегда содержат один или несколько усилителей.
Регуляторы промежуточного типа имеют усилители, но для перестановки регулирующего органа используют энергию регулируемой среды.
Если давление газа регулируется после регулятора, то регулятор называется «после себя»; если регулируется давление до регулятора, то регулятор называется «до себя». Для регулирования давления газа в городских системах газоснабжения применяют регуляторы «после себя».
