- •1.Классификация магистральных нефтепроводов и газопроводов Классификация нефтепроводов сп 36.13330.2012
- •2. Системы перекачки
- •3. Характеристики насосов, насосных станций и трубопровода. Совмещённая характеристика.
- •Совмещенная характеристика
- •4. Уравнение баланса напоров.
- •Формулы для гидравлического расчета нефтепровода.
- •Потери напора на трение в тп опр-т по формуле Дарси-Вейсбаха
- •5. Определение необходимого числа насосных станций
- •6. Определение наличия перевальных точек по трассе нефтепровода
- •7. Расчет трубопроводов при заданном расположении насосных станций
- •8.Расчет коротких трубопроводов
- •9. Нефтепроводы со сбросами
- •10 Регулирование режима работы насосных станций.
- •1Изменение параметров нпс:
- •2Изменение параметров тр-да
- •Методы, связанные с изменением параметров трубопровода:
- •11. Основные формулы для гидравлического расчета газопровода
- •12. Температурный режим газопровода
- •13. Изменение давления по длине гп. Среднее давление.
- •Среднее давление в газопроводе
- •14. Определение зоны возможного гидратообразования в гп.
- •15. Защита трубопроводов от коррозии
- •16. Целесообразность последовательной перекачки
- •17. Приближенная теория смесеобразования
- •18. Влияние различных факторов на процесс смесеобразования и борьба с ним
- •Влияние скорость перекачки
- •Влияние остановок перекачки
- •Влияние конструктивных особенностей обвязки перекачивающих станций
- •Влияние объема партий перекачиваемых жидкостей
- •Влияние соотношения вязкостей жидкостей
- •19. Прием и реализация смеси на конечном пункте трубопровода
- •Прием всей смеси в один резервуар
- •Деление смеси пополам
- •Прием всей смеси в один чистый нефтепродукт
- •Деление смеси на три неравные части
- •20. Особенности гидрав-го расчета при последовательной перекачке Определение числа перекачивающих станций
- •Определение числа циклов последовательной перекачки
- •Определение необходимого объема резервуарной емкости
- •21. Изменение давления нпс и расхода при замещении одного нефтепродукта другим.
- •Изменение давления на выходе перекачивающей станции
- •Изменение давления в линейной части трубопровода
- •22. Контроль за последовательной перекачкой
- •Контроль смеси по изменению плотности
- •Контроль смеси по скорости распространения ультразвука
- •Контроль смеси по оптической плотности
- •Контроль смеси с помощью индикаторов
- •23. Реологические свойства вязких и застывающих нефтей
- •24. Способы перекачки вязких и застывающих нефтей
- •Гидроперекачка
- •Перекачка с предварительным улучшением реологических свойств нефтей за счет механического воздействия
- •25. Исходные данные для теплового и гидрав-го расчета
- •26. Тепловой расчёт горячих трубопроводов
- •27. Гидравлический расчет горячих трубопроводов
- •28. Оптимальная температура подогрева
- •29. Прогрев горячих тп перед пуском
- •30. Замещение высоковязких нефтей маловязкой жидкостью при остановках горячей перекачки.
- •31. Трубопроводный транспорт нефти и газа в двухфазном сост-и
- •32. Трубопроводный транспорт газонасыщенных нефтей
- •33 Трубопроводный транспорт твёрдых и сыпучих материалов.
- •34. Очистка трубопровода от отложений парафина.
- •35. Нагрузки и воздействия Расчет толщины стенки трубопровода.
- •36. Проверка трубопровода на прочность и деформацию
- •37. Разделение т/п и их лч на категории.
- •38. Очистка внутренней полости и испытание т/п после сооружения
- •39. Подводные переходы (подготовительные работы, способы пригрузки, расчет устойчивости).
- •40. Проверочный расчет фундаментов под основное оборудование на статические и динамические нагрузки.
- •41 Выверка оборудования при его монтаже на фундаменте
- •Установочными болтами: Более эффективным способом выверки в вертикальной плоскости является бесподкладочный (с помощью установочных болтов).
- •42 Монтаж подшипников агрегатов.
- •Подшипники скольжения.
- •Подшипники качения.
- •43. Центровка полумуфт и валов агрегатов по полумуфтам.
- •2) По полумуфтам при помощи двух радиальных стрелок (рис.3, б):
- •44. Пусконаладочные работы Правила технической эксплуатации и требования безопасности труда в газовом хозяйстве Российской Федерации:
- •45. Сварочно-монтажные работы при сооружении мт
- •1Ручная электродуговая сварка
- •Допустимая плотность тока при ручной электродуговой сварке, а/мм2
- •2Механизированная электродуговая сварка
- •46, Контроль формы резервуара после монтажа. Испытание резервуара.
- •47 Классификация аварий на мт и мг. Виды отказов.
- •48 Контроль изоляционных покрытий магистрального трубопровода.
- •49Полистовой метод монтажа резервуаров
- •50 Капитальный ремонт линейной части трубопроводов (подготовительные, виды и схемы ремонта трубопроводов). Последовательность операции при ремонте.
- •51 Ликвидация аварий на трубопроводах.
- •52 Ремонт основного технологического оборудования нс (дефекты и ремонт цбн).
- •53 Ремонт фундаментов под резервуары.
- •54 Ремонт днища резервуара
- •55 Ремонт корпуса и крыши рвс
- •56Типы и категории нб и технологические операции, проводимые на них Основные сведения по нб
- •Типы, группы и категории нб
- •Технологические операции нб
- •57 Определение потерь напора в напорных трубопроводах нб
- •58. Расчет сифонных трубопроводов
- •59.Определение необходимой емкости резервуарного парка нб
- •60.Классификация резервуаров. Конструкция резервуаров типа рвс
- •Стальные резервуары низкого давления
- •Вертикальные стальные цилиндрические резервуары
- •61.Приемо-раздаточное оборудование резервуаров
- •62.Дыхательная арматура резервуаров
- •63.Замерное оборудование резервуаров
- •64.Трубопроводы нефтебаз и трубопроводная арматура
- •65.Железнодорожные тупики, эстакады, цистерны и сливо-наливные устройства
- •Сливные устройства
- •Способы слива/налива нефтепродуктов
- •66.Нефтяные гавани, причальные сооружения, нефтеналивные суда и устройства Нефтеналивные суда
- •67.Виды потерь н/пр от испарения из резервуаров Источники и классификация потерь н/пр и нефтей
- •Об испаряемости н/пр и нефтей
- •Потери от испарения, вызванные малым дыханием резервуара
- •Потери, обусловленные большими дыханиями резервуара
- •Определение потерь при обратном выдохе
- •Мероприятия по сокращению потерь н/пр и нефтей от испарения
- •68.Технические мероприятия по сокращению потерь от испарения из резервуаров
- •Применение понтонов
- •69. Назначение и способы подогрева н/пр в резервуарах, транспортных емкостях и трубопроводов Использование тепла на нб
- •Теплоносители и источники тепла
- •Способы и средства подогрева в резервуара
- •Способы и средства подогрева транспортных емкостей
- •Средства и способы подогрева технологических тп и арматуры
- •70.Определение вероятной температуры н/пр в конце хранения или транспортировки
- •Расчет трубчатых подогревателей
- •Расчет электроподогревателей
- •71. Расчетные часовые расходы газа. Коэффициент часового максимума. Коэффициент одновременности.
- •72 Методы расчета тупиковой газораспределительной сети
- •73 Метод «предельной выгоды» при расчете диаметров тупиковой сети.
- •74 Принцип расчета кольцевых сетей
- •75 Методика гидравлической увязки кольцевой сети
- •76 Регуляторы давления газа. Классификация регуляторов давления
- •77 Расчет пропускной способности регуляторов давления
- •79. Схема и принцип действия рдук-2
- •80Температурный режим грс.Борьба с гидратообраз-ем наГрс.
- •81 Состав сжиженных углеводородных газов
- •82. Железнодорожные цистерны. Ж.Д транспорт суг
- •83 Хранение суг. Классификация хранилищ суг
- •84 Емкости для хранения суг под давлением.
- •Низкотемпературное хранение суг.
- •86 Технологическая схема пхг
- •87 Характеристика сточных вод нб и пс и их загрязнений
- •88 Методы, процессы и средства очистки нефтесодержащих сточных вод
- •89 Сооружения механической очистки сточных вод
- •90 Сооружения физико-химической очистки сточных вод Флотационные установки
- •91 Сооружения биологической очистки сточных вод
- •92 Вспомогательные устройства в комплексе очистных станций
- •Буферный резервуар
- •Шламонакопители
- •93 Принципиальная схема очистного комплекса
- •94 Закономерности и расчет разбавления сточных вод в реках
- •95 Локализация места аварий на воде и на почве
- •Пример бонового заграждения морского ведомства
- •96 Сбор нефти с поверхности воды
- •97 Сбор нефти с поверхности почвы
- •98 Рекультивация земель
- •99 Классификация нс и кс. Размещение основных объектов на территории
- •100 Основное оборудование нс
- •101 Основное оборудование кс
- •102 Технологическая схема нс
- •103 Технологическая схема кс
- •104 Вспомогательное оборудование насосного цеха
- •105 Вспомогательное оборудование компрессорного цеха (маслоснабжение, уплотнения и т.Д)
- •106 Учет нефти и нефтепродуктов
- •107 Системы водоснабжения нс и кс
- •I. Основные сведения по системам водоснабжения
- •1.1. Источники водоснабжения
- •2. Расчет водопотребления
- •2.1. Хозяйственно-питьевое потребление
- •2.2.1. Оборотное водоснабжение
- •2,3 Противопожарное водопотребление
- •5. Гидравлический расчет водопроводных сетей и водоводов
- •49. Полистовой метод монтажа резервуаров.
72 Методы расчета тупиковой газораспределительной сети
Метод основан на принципе равномерного расчетного перепада давления по участкам сети. Указанный принцип заключается в том, что при расчете диаметров участков сети используются
соотношения:
- для высокого (среднего) давления:
=
= const;
- для низкого давления:
=
= const;
где l
=
- расчетная длина приоритетного
направления, состоящего из N участков:
=
(1,05 – 1,10)
- расчетная длина i-го
участка. В соответствии со СП 42-101-2003
падение давления в местных сопротивлениях
(колена, тройники, запорная арматура и
др.) допускается учитывать путем
увеличения фактической длины участков
газопровода
на 5-10 %. Тогда расчетный перепад на i-м
участке определится из соотношения
-
=
Или
-
=
.
Дальнейшая процедура расчета состоит в проведении последовательных операций определения теоретического диаметра участка, выбора ближайшего стандартного диаметра,
расчета перепада давления на каждом участке с учетом реального внутреннего диаметра трубы, оценке суммарного перепада давления и последующей, при необходимости, корректировке диаметра одного из участков с целью приведения суммарного перепада давления в соответствие с допустимым расчетным перепадом. С учетом указанной процедуры и остаточного давления в узлах переходят к расчету диаметров вспомогательных направлений.
Для упрощения ручных расчетов широко используются номограммы
Очередность:
1)рн-зависит от режима ГРС, рк-от давления на входе в ГРП;
2)выбирается самая удаленная точка, определяется lобщ по выбранному направлению;
3) = Аср = const; lрасч =1,1∑
4)Определяем расчетные расходы газа Qр
5)По Аср и Q находим диаметры из номограммы, находятся действительные значения Аср
6)рассчитывают давления сначала выбранного основного направления,затем ответвлений
73 Метод «предельной выгоды» при расчете диаметров тупиковой сети.
Очень часто при расчете диаметров участков тупиковой газораспределительной сети с применением того или иного метода потери давления по одному или нескольким направлениям могут отличаться как в большую, так и в меньшую сторону от расчетного перепада давления. При этом этом возникает задача выбора участка, на котором необходимо либо увеличить, либо уменьшить диаметр до следующего стандартного.
Вводится понятие параметра U («utilité marginale»), который вычисляется по формуле
,
(2.42)
где Н – величина приращения потерь давления, положительная при переходе с большего диаметра на меньший и отрицательная при переходе с меньшего диаметра на больший;
S – величина приращения стоимости строительства рассматриваемого участка газопровода, отрицательная при переходе с большего диаметра на меньший и положительная при переходе с меньшего диаметра на больший.
При этом может иметь место два случая:
перепад давления по направлению превышает расчетный перепад давления. Возникает необходимость увеличения диаметра на одном или нескольких участках. При этом желательно выбрать такой участок, при увеличении диаметра которого при наименьшем увеличении стоимости строительства будет быстро достигнут эффект снижения потерь давления. Другими словами, следует искать участок, для которого
.
Отсюда следует вывод, что в случае необходимости увеличения диаметра наименьший ущерб может быть дистигнут коррекцией в большую сторону диаметра участка для которого параметр U является наибльшим на рассматриваемом направлении;
2) недоиспользование расчетного перепада давления. Появляется возможность уменьшения диаметра на каком-то участке. При этом, естественно, экономическая выгода от уменьшения диаметра должна быть как можно большей, а увеличение потерь давления минимальным с тем, чтобы можно было продолжить уменьшение диаметра на том же или на другом участке, увеличивая при этом экономическую выгоду от уменьшения диаметра. Другими словами, во втором случае следует искать участок, для которого
.
Отсюда следует, что в случае возможности уменьшения диаметра наибольшую выгоду можно достичь коррекцией диаметра участка, для которого параметр U является минимальным на рассмативаемом направлении.
С
целью сокрашения объема вычислений
вместо введения массива стоимости
строительства 1 м длины газопровода для
употребляемых стандатрных диаметров
может быть принята зависимость, с учетом
которой стоимость участка сети может
быть определена как
.
С
учетом этого выражения, а также обобщенной
формулы
можно
значительно упростить расчет и оценку
параметра U
при применении метода «предельной
выгоды». Действительно, можно записать
.
Используя описанные выше зависимости, можно показать, что для расчета и оценки параметра U достаточно использовать аналитическое выражение вида
,
где коэффициенты и для различных рабочих давлений.
