- •1.Классификация магистральных нефтепроводов и газопроводов Классификация нефтепроводов сп 36.13330.2012
- •2. Системы перекачки
- •3. Характеристики насосов, насосных станций и трубопровода. Совмещённая характеристика.
- •Совмещенная характеристика
- •4. Уравнение баланса напоров.
- •Формулы для гидравлического расчета нефтепровода.
- •Потери напора на трение в тп опр-т по формуле Дарси-Вейсбаха
- •5. Определение необходимого числа насосных станций
- •6. Определение наличия перевальных точек по трассе нефтепровода
- •7. Расчет трубопроводов при заданном расположении насосных станций
- •8.Расчет коротких трубопроводов
- •9. Нефтепроводы со сбросами
- •10 Регулирование режима работы насосных станций.
- •1Изменение параметров нпс:
- •2Изменение параметров тр-да
- •Методы, связанные с изменением параметров трубопровода:
- •11. Основные формулы для гидравлического расчета газопровода
- •12. Температурный режим газопровода
- •13. Изменение давления по длине гп. Среднее давление.
- •Среднее давление в газопроводе
- •14. Определение зоны возможного гидратообразования в гп.
- •15. Защита трубопроводов от коррозии
- •16. Целесообразность последовательной перекачки
- •17. Приближенная теория смесеобразования
- •18. Влияние различных факторов на процесс смесеобразования и борьба с ним
- •Влияние скорость перекачки
- •Влияние остановок перекачки
- •Влияние конструктивных особенностей обвязки перекачивающих станций
- •Влияние объема партий перекачиваемых жидкостей
- •Влияние соотношения вязкостей жидкостей
- •19. Прием и реализация смеси на конечном пункте трубопровода
- •Прием всей смеси в один резервуар
- •Деление смеси пополам
- •Прием всей смеси в один чистый нефтепродукт
- •Деление смеси на три неравные части
- •20. Особенности гидрав-го расчета при последовательной перекачке Определение числа перекачивающих станций
- •Определение числа циклов последовательной перекачки
- •Определение необходимого объема резервуарной емкости
- •21. Изменение давления нпс и расхода при замещении одного нефтепродукта другим.
- •Изменение давления на выходе перекачивающей станции
- •Изменение давления в линейной части трубопровода
- •22. Контроль за последовательной перекачкой
- •Контроль смеси по изменению плотности
- •Контроль смеси по скорости распространения ультразвука
- •Контроль смеси по оптической плотности
- •Контроль смеси с помощью индикаторов
- •23. Реологические свойства вязких и застывающих нефтей
- •24. Способы перекачки вязких и застывающих нефтей
- •Гидроперекачка
- •Перекачка с предварительным улучшением реологических свойств нефтей за счет механического воздействия
- •25. Исходные данные для теплового и гидрав-го расчета
- •26. Тепловой расчёт горячих трубопроводов
- •27. Гидравлический расчет горячих трубопроводов
- •28. Оптимальная температура подогрева
- •29. Прогрев горячих тп перед пуском
- •30. Замещение высоковязких нефтей маловязкой жидкостью при остановках горячей перекачки.
- •31. Трубопроводный транспорт нефти и газа в двухфазном сост-и
- •32. Трубопроводный транспорт газонасыщенных нефтей
- •33 Трубопроводный транспорт твёрдых и сыпучих материалов.
- •34. Очистка трубопровода от отложений парафина.
- •35. Нагрузки и воздействия Расчет толщины стенки трубопровода.
- •36. Проверка трубопровода на прочность и деформацию
- •37. Разделение т/п и их лч на категории.
- •38. Очистка внутренней полости и испытание т/п после сооружения
- •39. Подводные переходы (подготовительные работы, способы пригрузки, расчет устойчивости).
- •40. Проверочный расчет фундаментов под основное оборудование на статические и динамические нагрузки.
- •41 Выверка оборудования при его монтаже на фундаменте
- •Установочными болтами: Более эффективным способом выверки в вертикальной плоскости является бесподкладочный (с помощью установочных болтов).
- •42 Монтаж подшипников агрегатов.
- •Подшипники скольжения.
- •Подшипники качения.
- •43. Центровка полумуфт и валов агрегатов по полумуфтам.
- •2) По полумуфтам при помощи двух радиальных стрелок (рис.3, б):
- •44. Пусконаладочные работы Правила технической эксплуатации и требования безопасности труда в газовом хозяйстве Российской Федерации:
- •45. Сварочно-монтажные работы при сооружении мт
- •1Ручная электродуговая сварка
- •Допустимая плотность тока при ручной электродуговой сварке, а/мм2
- •2Механизированная электродуговая сварка
- •46, Контроль формы резервуара после монтажа. Испытание резервуара.
- •47 Классификация аварий на мт и мг. Виды отказов.
- •48 Контроль изоляционных покрытий магистрального трубопровода.
- •49Полистовой метод монтажа резервуаров
- •50 Капитальный ремонт линейной части трубопроводов (подготовительные, виды и схемы ремонта трубопроводов). Последовательность операции при ремонте.
- •51 Ликвидация аварий на трубопроводах.
- •52 Ремонт основного технологического оборудования нс (дефекты и ремонт цбн).
- •53 Ремонт фундаментов под резервуары.
- •54 Ремонт днища резервуара
- •55 Ремонт корпуса и крыши рвс
- •56Типы и категории нб и технологические операции, проводимые на них Основные сведения по нб
- •Типы, группы и категории нб
- •Технологические операции нб
- •57 Определение потерь напора в напорных трубопроводах нб
- •58. Расчет сифонных трубопроводов
- •59.Определение необходимой емкости резервуарного парка нб
- •60.Классификация резервуаров. Конструкция резервуаров типа рвс
- •Стальные резервуары низкого давления
- •Вертикальные стальные цилиндрические резервуары
- •61.Приемо-раздаточное оборудование резервуаров
- •62.Дыхательная арматура резервуаров
- •63.Замерное оборудование резервуаров
- •64.Трубопроводы нефтебаз и трубопроводная арматура
- •65.Железнодорожные тупики, эстакады, цистерны и сливо-наливные устройства
- •Сливные устройства
- •Способы слива/налива нефтепродуктов
- •66.Нефтяные гавани, причальные сооружения, нефтеналивные суда и устройства Нефтеналивные суда
- •67.Виды потерь н/пр от испарения из резервуаров Источники и классификация потерь н/пр и нефтей
- •Об испаряемости н/пр и нефтей
- •Потери от испарения, вызванные малым дыханием резервуара
- •Потери, обусловленные большими дыханиями резервуара
- •Определение потерь при обратном выдохе
- •Мероприятия по сокращению потерь н/пр и нефтей от испарения
- •68.Технические мероприятия по сокращению потерь от испарения из резервуаров
- •Применение понтонов
- •69. Назначение и способы подогрева н/пр в резервуарах, транспортных емкостях и трубопроводов Использование тепла на нб
- •Теплоносители и источники тепла
- •Способы и средства подогрева в резервуара
- •Способы и средства подогрева транспортных емкостей
- •Средства и способы подогрева технологических тп и арматуры
- •70.Определение вероятной температуры н/пр в конце хранения или транспортировки
- •Расчет трубчатых подогревателей
- •Расчет электроподогревателей
- •71. Расчетные часовые расходы газа. Коэффициент часового максимума. Коэффициент одновременности.
- •72 Методы расчета тупиковой газораспределительной сети
- •73 Метод «предельной выгоды» при расчете диаметров тупиковой сети.
- •74 Принцип расчета кольцевых сетей
- •75 Методика гидравлической увязки кольцевой сети
- •76 Регуляторы давления газа. Классификация регуляторов давления
- •77 Расчет пропускной способности регуляторов давления
- •79. Схема и принцип действия рдук-2
- •80Температурный режим грс.Борьба с гидратообраз-ем наГрс.
- •81 Состав сжиженных углеводородных газов
- •82. Железнодорожные цистерны. Ж.Д транспорт суг
- •83 Хранение суг. Классификация хранилищ суг
- •84 Емкости для хранения суг под давлением.
- •Низкотемпературное хранение суг.
- •86 Технологическая схема пхг
- •87 Характеристика сточных вод нб и пс и их загрязнений
- •88 Методы, процессы и средства очистки нефтесодержащих сточных вод
- •89 Сооружения механической очистки сточных вод
- •90 Сооружения физико-химической очистки сточных вод Флотационные установки
- •91 Сооружения биологической очистки сточных вод
- •92 Вспомогательные устройства в комплексе очистных станций
- •Буферный резервуар
- •Шламонакопители
- •93 Принципиальная схема очистного комплекса
- •94 Закономерности и расчет разбавления сточных вод в реках
- •95 Локализация места аварий на воде и на почве
- •Пример бонового заграждения морского ведомства
- •96 Сбор нефти с поверхности воды
- •97 Сбор нефти с поверхности почвы
- •98 Рекультивация земель
- •99 Классификация нс и кс. Размещение основных объектов на территории
- •100 Основное оборудование нс
- •101 Основное оборудование кс
- •102 Технологическая схема нс
- •103 Технологическая схема кс
- •104 Вспомогательное оборудование насосного цеха
- •105 Вспомогательное оборудование компрессорного цеха (маслоснабжение, уплотнения и т.Д)
- •106 Учет нефти и нефтепродуктов
- •107 Системы водоснабжения нс и кс
- •I. Основные сведения по системам водоснабжения
- •1.1. Источники водоснабжения
- •2. Расчет водопотребления
- •2.1. Хозяйственно-питьевое потребление
- •2.2.1. Оборотное водоснабжение
- •2,3 Противопожарное водопотребление
- •5. Гидравлический расчет водопроводных сетей и водоводов
- •49. Полистовой метод монтажа резервуаров.
49Полистовой метод монтажа резервуаров
В полистовом варианте исполнения сборка стенок и днищ вертикальных резервуаров осуществляется с применением листов металла шириной от 1,8 до 3 метров и длинной до 12 метров. Листовые конструкции стенок и детали днища упаковываются и транспортируются в специально изготовленных ложементах (контейнерах).
Листовой металл доставляется в пункт назначения железнодорожным или водным транспортом, с которого краном перегружается на автомашины с прицепом.Днище резервуара состоит из полотнища, монтируемого из листов стандартного размера толщиной, указанной в проекте, и окраек, которые, как правило, на 1-3 мм толще листов полотнища. После выполнения всех подготовительных работ приступают к раскладке листов в соответствии с проектом. Раскладку полотнища днища начинают со средней полосы. Раскладку средней полосы начинают со среднего листа. От него в обе стороны раскладывают остальные листы средней полосы. Укладывают их с помощью крана. Листы в полосе по короткой стороне соединяют между собой внахлестку - последующий лист укладывается на предыдущий .Величина нахлестки по короткой стороне 30-40 мм (это расстояние должно быть отмечено риской).По окончании раскладки все листы сваривают. Сварку прекращают, не доходя до окраек на 500-700 мм. Ее заканчивают после приварки первого пояса к днищу. После окончания сварки в центре днища, перпендикулярно его плоскости, приваривают стальной пруток. Из центра днища очерчивают две окружности - внутреннюю, равную наружному диаметру корпуса, и внешнюю, равную диаметру днища. По диаметру внешней окружности окрайки обрезают.На этом монтаж днища заканчивается, а сварка временно прекращается (до окончания установки первого пояса корпуса).Сначала устанавливают первый пояс корпуса резервуара. Первый пояс многопоясных резервуаров монтируют обычно из более толстых листов, чем верхние пояса (например, в резервуаре емкостью 5000 м толщина листов первого пояса 10 мм). К свальцованным листам первого пояса с внутренней стороны на уровне риски приваривают ослабленным швом ограничители , на которые устанавливают листы второго пояса. К днищу по риске наружного диаметра корпуса с внешней стороны прихватывают ограничители из уголка. Их назначение - фиксировать положение устанавливаемых листов первого пояса. Расстояние между ограничителями принимается 600-1200 мм.После установки всех листов первого пояса с внутренней стороны прихватывают планки для универсального стяжного приспособления. Первым листом первого пояса следует устанавливать тот лист, в который, согласно проекту, будет вварен приемо-раздаточный патрубок. Первый лист нужно устанавливать так, чтобы ось патрубка проходила приблизительно посередине листа, при этом вертикальные кромки листа должны быть удалены от швов окраек днища не менее чем на 500 мм.После первого листа устанавливают остальные листы первого пояса. Листы нижних поясов монтируют встык, для получения хорошего качества сварного шва между ними оставляют зазор в 2-3 мм. Замыкающий лист устанавливают внахлестку с первым листом, что позволяет компенсировать неточность сборки листов. Каждый установленный лист проверяют по отвесу.Далее сваривают участки вертикальных швов первого пояса на высоту 200-300 мм от днища резервуара. Швы проваривают на полное сечение с обеих сторон листа. Когда заварены все участки вертикальных швов (кроме последнего), замыкающий лист, ранее установленный внахлестку, обрезают по кромке первого листа и прижимным приспособлением переводят в стыковое положение. После этого участок последнего вертикального шва также заваривают на высоту 200-300 мм. Потом сваривают поперечные окрайки днища.
Затем приваривают первый пояс к днищу резервуара. Сначала можно заварить внутреннюю сторону, и затем - наружную. После этого сваривают недоваренные ранее участки полос днища по длинной стороне и продольные окрайки между собой, а окрайки приваривают к полотнищу днища.Монтаж поясов корпуса резервуара следует производить с помощью крана.После окончания монтажа и сварки верхнего пояса все швы корпуса испытываются керосином. Опрыскивание керосином производится с внутренней стороны, а водным раствором мела - с наружной, контроль качества стыков осуществляется с наружной стороны. При наличии дефекта на меловой обмазке образуются коричневые пятна.
Монтаж перекрытия начинается с приварки опорных столиков в местах опирания ферм на корпус. Далее, в центре резервуара на расчалках устанавливается временная стойка для поддержания центральной опорной стойки ферм перекрытия, а над опорными столиками корпуса по мере монтажа ферм устанавливается легкая инвентарная переносная мачта.Полуфермы монтируются с помощью лебедок. Тросы одной из них запасованы на блок переносной мачты, а другой - на временную стойку, которая примерно на 2м выше верхнего пояса ферм. Монтаж начинается с любой пары полуферм. Полуфермы крепятся к опорным столикам и центральной стойке вначале на временных болтах, а после выверки диаметров на постоянных болтах или сварке. Чтобы придать полуфермам жесткость из плоскости фермы, в некоторых случаях при подъеме и монтаже их усиливают деревянными брусьями, демонтируемыми после окончания монтажа.
Затем производят монтаж балок и связей перекрытия.
Полистовой метод отличается очень большой трудоемкостью и большой продолжительностью. В последние 20 лет этот метод возведения (главным образом днища и корпуса) практически не используется.
В зависимости от расположения поясов различают резервуары с телескопическим, обратно-телескопическим, ступенчатым, смешанным и стыковым расположением поясов (рис.1).
Рис.1.
Расположение поясов:
а- ступенчатое; б - телескопическое; в- обратно-телескопическое; г- смешанное; д- стыковое
Цилиндрические
вертикальные резервуары изготовляются
емкостью до 10000 м
и
более по типовым проектам.
По условиям работы металлические резервуары относятся к сильно нагруженным ответственным металлоконструкциям, работающим при разных температурных режимах внутри и снаружи сооружения в зимний период и различных ветровых нагрузках. Вследствие этого к металлу резервуара предъявляются особые требования.
Днища, корпуса и люки-лазы вертикальных резервуаров выполняются из спокойной мартеновской стали. В районах строительства с расчетной температурой -20° С применяется мартеновская сталь спокойная марки Ст. 3 с дополнительными гарантиями предела текучести, предельного содержания углерода, серы и фосфора и устойчивости на загиб в холодном состоянии. В районах с более низкой температурой применяется мартеновская спокойная сталь, дополнительно раскисленная алюминием и с гарантированной ударной вязкостью при температуре -40° С.
Для несущих конструкций перекрытия резервуаров и кровли допускается применение как спокойной, так и кипящей мартеновской стали с дополнительными гарантиями предела текучести, предельного содержания углерода, серы и фосфора. Для лестниц и перил допускается использовать кипящую мартеновскую сталь при условии ее предварительного испытания на свариваемость. Цилиндрические вертикальные резервуары устанавливаются на искусственном основании, состоящем из грунтовой подсыпки, песчаной подушки и гидроизолирующего гидрофобного слоя, на котором монтируется днище резервуара. Основание резервуара является ответственным элементом, от тщательности выполнения которого зависит надежность работы резервуара в период эксплуатации.
Основания можно возводить практически на всех грунтах, кроме ила, торфа, пучинистых и плывунных грунтов (если возможна их подвижка под резервуаром). Устройству основания предшествует разбивка его в натуре, отвод поверхностных вод от основания и срезка растительного слоя, взамен которого засыпается местный материковый грунт. Сверх засыпанного грунта отсыпается подушка из песка средней крупности. В некоторых случаях песчаная подсыпка устраивается сразу же после снятия растительного слоя. Поверх песчаной подушки укладывают гидроизолирующий слой с целью предохранения металла днища от коррозии, возникающей под действием конденсата или грунтовой воды. Толщина гидроизолирующего слоя принимается согласно проекту (8-10 см). Гидроизолирующий слой приготавливают из супесчаного грунта влажностью до 3%, перемешиваемого с жидким битумом, количество которого принимается от 8 до 10% по объему смеси. Приготовленную смесь укладывают без подогрева, равномерным слоем проектной толщины с уклоном от центра к краям в 2%. Вместо жидкого битума можно применять: каменноугольный деготь, гудроны, полугудроны и мазут. Гидроизолирующий слой уплотняют катком или вибратором, а при небольших объемах работ - трамбовкой. Укладка гидроизолирующего слоя допускается только при отсутствии осадков. Согласно СНиП, устраивать основания при температуре ниже 0° С не разрешается. Однако в исключительных случаях в песчаных и супесчаных грунтах разрешается устраивать основание непосредственно на мерзлом грунте, если установка реперов и мероприятия по отводу талых вод от основания резервуара выполнены до наступления зимнего периода.
В отдельных случаях, предусматриваемых проектами, гидроизолирующее основание не делается, а гидроизоляция наносится на наружную поверхность днища резервуара. Если конструкция крыши предусматривает опоры на центральную стойку или на колонны, то до засыпки грунта под основание устраивают бетонные фундаменты под колонны. Отметка верха фундамента должна быть заподлицо с отметкой верха гидроизолирующего слоя.
Строительные работы по устройству основания не входят в обязанность монтажной организации. Перед началом монтажных работ представитель заказчика проверяет правильность посадки резервуара в соответствии с проектом и вместе с представителем монтажной организации осуществляет приемку основания, о чем составляется акт по соответствующей форме. При приемке основания с помощью нивелировки должны быть проверены: привязка в плане, отметка центра основания и отметка периметра основания не менее чем в восьми точках, но не реже, чем через 6 м (отметки должны быть одинаковыми). Кроме того, проверяют толщину и качество гидроизолирующего слоя.
