- •1.Классификация магистральных нефтепроводов и газопроводов Классификация нефтепроводов сп 36.13330.2012
- •2. Системы перекачки
- •3. Характеристики насосов, насосных станций и трубопровода. Совмещённая характеристика.
- •Совмещенная характеристика
- •4. Уравнение баланса напоров.
- •Формулы для гидравлического расчета нефтепровода.
- •Потери напора на трение в тп опр-т по формуле Дарси-Вейсбаха
- •5. Определение необходимого числа насосных станций
- •6. Определение наличия перевальных точек по трассе нефтепровода
- •7. Расчет трубопроводов при заданном расположении насосных станций
- •8.Расчет коротких трубопроводов
- •9. Нефтепроводы со сбросами
- •10 Регулирование режима работы насосных станций.
- •1Изменение параметров нпс:
- •2Изменение параметров тр-да
- •Методы, связанные с изменением параметров трубопровода:
- •11. Основные формулы для гидравлического расчета газопровода
- •12. Температурный режим газопровода
- •13. Изменение давления по длине гп. Среднее давление.
- •Среднее давление в газопроводе
- •14. Определение зоны возможного гидратообразования в гп.
- •15. Защита трубопроводов от коррозии
- •16. Целесообразность последовательной перекачки
- •17. Приближенная теория смесеобразования
- •18. Влияние различных факторов на процесс смесеобразования и борьба с ним
- •Влияние скорость перекачки
- •Влияние остановок перекачки
- •Влияние конструктивных особенностей обвязки перекачивающих станций
- •Влияние объема партий перекачиваемых жидкостей
- •Влияние соотношения вязкостей жидкостей
- •19. Прием и реализация смеси на конечном пункте трубопровода
- •Прием всей смеси в один резервуар
- •Деление смеси пополам
- •Прием всей смеси в один чистый нефтепродукт
- •Деление смеси на три неравные части
- •20. Особенности гидрав-го расчета при последовательной перекачке Определение числа перекачивающих станций
- •Определение числа циклов последовательной перекачки
- •Определение необходимого объема резервуарной емкости
- •21. Изменение давления нпс и расхода при замещении одного нефтепродукта другим.
- •Изменение давления на выходе перекачивающей станции
- •Изменение давления в линейной части трубопровода
- •22. Контроль за последовательной перекачкой
- •Контроль смеси по изменению плотности
- •Контроль смеси по скорости распространения ультразвука
- •Контроль смеси по оптической плотности
- •Контроль смеси с помощью индикаторов
- •23. Реологические свойства вязких и застывающих нефтей
- •24. Способы перекачки вязких и застывающих нефтей
- •Гидроперекачка
- •Перекачка с предварительным улучшением реологических свойств нефтей за счет механического воздействия
- •25. Исходные данные для теплового и гидрав-го расчета
- •26. Тепловой расчёт горячих трубопроводов
- •27. Гидравлический расчет горячих трубопроводов
- •28. Оптимальная температура подогрева
- •29. Прогрев горячих тп перед пуском
- •30. Замещение высоковязких нефтей маловязкой жидкостью при остановках горячей перекачки.
- •31. Трубопроводный транспорт нефти и газа в двухфазном сост-и
- •32. Трубопроводный транспорт газонасыщенных нефтей
- •33 Трубопроводный транспорт твёрдых и сыпучих материалов.
- •34. Очистка трубопровода от отложений парафина.
- •35. Нагрузки и воздействия Расчет толщины стенки трубопровода.
- •36. Проверка трубопровода на прочность и деформацию
- •37. Разделение т/п и их лч на категории.
- •38. Очистка внутренней полости и испытание т/п после сооружения
- •39. Подводные переходы (подготовительные работы, способы пригрузки, расчет устойчивости).
- •40. Проверочный расчет фундаментов под основное оборудование на статические и динамические нагрузки.
- •41 Выверка оборудования при его монтаже на фундаменте
- •Установочными болтами: Более эффективным способом выверки в вертикальной плоскости является бесподкладочный (с помощью установочных болтов).
- •42 Монтаж подшипников агрегатов.
- •Подшипники скольжения.
- •Подшипники качения.
- •43. Центровка полумуфт и валов агрегатов по полумуфтам.
- •2) По полумуфтам при помощи двух радиальных стрелок (рис.3, б):
- •44. Пусконаладочные работы Правила технической эксплуатации и требования безопасности труда в газовом хозяйстве Российской Федерации:
- •45. Сварочно-монтажные работы при сооружении мт
- •1Ручная электродуговая сварка
- •Допустимая плотность тока при ручной электродуговой сварке, а/мм2
- •2Механизированная электродуговая сварка
- •46, Контроль формы резервуара после монтажа. Испытание резервуара.
- •47 Классификация аварий на мт и мг. Виды отказов.
- •48 Контроль изоляционных покрытий магистрального трубопровода.
- •49Полистовой метод монтажа резервуаров
- •50 Капитальный ремонт линейной части трубопроводов (подготовительные, виды и схемы ремонта трубопроводов). Последовательность операции при ремонте.
- •51 Ликвидация аварий на трубопроводах.
- •52 Ремонт основного технологического оборудования нс (дефекты и ремонт цбн).
- •53 Ремонт фундаментов под резервуары.
- •54 Ремонт днища резервуара
- •55 Ремонт корпуса и крыши рвс
- •56Типы и категории нб и технологические операции, проводимые на них Основные сведения по нб
- •Типы, группы и категории нб
- •Технологические операции нб
- •57 Определение потерь напора в напорных трубопроводах нб
- •58. Расчет сифонных трубопроводов
- •59.Определение необходимой емкости резервуарного парка нб
- •60.Классификация резервуаров. Конструкция резервуаров типа рвс
- •Стальные резервуары низкого давления
- •Вертикальные стальные цилиндрические резервуары
- •61.Приемо-раздаточное оборудование резервуаров
- •62.Дыхательная арматура резервуаров
- •63.Замерное оборудование резервуаров
- •64.Трубопроводы нефтебаз и трубопроводная арматура
- •65.Железнодорожные тупики, эстакады, цистерны и сливо-наливные устройства
- •Сливные устройства
- •Способы слива/налива нефтепродуктов
- •66.Нефтяные гавани, причальные сооружения, нефтеналивные суда и устройства Нефтеналивные суда
- •67.Виды потерь н/пр от испарения из резервуаров Источники и классификация потерь н/пр и нефтей
- •Об испаряемости н/пр и нефтей
- •Потери от испарения, вызванные малым дыханием резервуара
- •Потери, обусловленные большими дыханиями резервуара
- •Определение потерь при обратном выдохе
- •Мероприятия по сокращению потерь н/пр и нефтей от испарения
- •68.Технические мероприятия по сокращению потерь от испарения из резервуаров
- •Применение понтонов
- •69. Назначение и способы подогрева н/пр в резервуарах, транспортных емкостях и трубопроводов Использование тепла на нб
- •Теплоносители и источники тепла
- •Способы и средства подогрева в резервуара
- •Способы и средства подогрева транспортных емкостей
- •Средства и способы подогрева технологических тп и арматуры
- •70.Определение вероятной температуры н/пр в конце хранения или транспортировки
- •Расчет трубчатых подогревателей
- •Расчет электроподогревателей
- •71. Расчетные часовые расходы газа. Коэффициент часового максимума. Коэффициент одновременности.
- •72 Методы расчета тупиковой газораспределительной сети
- •73 Метод «предельной выгоды» при расчете диаметров тупиковой сети.
- •74 Принцип расчета кольцевых сетей
- •75 Методика гидравлической увязки кольцевой сети
- •76 Регуляторы давления газа. Классификация регуляторов давления
- •77 Расчет пропускной способности регуляторов давления
- •79. Схема и принцип действия рдук-2
- •80Температурный режим грс.Борьба с гидратообраз-ем наГрс.
- •81 Состав сжиженных углеводородных газов
- •82. Железнодорожные цистерны. Ж.Д транспорт суг
- •83 Хранение суг. Классификация хранилищ суг
- •84 Емкости для хранения суг под давлением.
- •Низкотемпературное хранение суг.
- •86 Технологическая схема пхг
- •87 Характеристика сточных вод нб и пс и их загрязнений
- •88 Методы, процессы и средства очистки нефтесодержащих сточных вод
- •89 Сооружения механической очистки сточных вод
- •90 Сооружения физико-химической очистки сточных вод Флотационные установки
- •91 Сооружения биологической очистки сточных вод
- •92 Вспомогательные устройства в комплексе очистных станций
- •Буферный резервуар
- •Шламонакопители
- •93 Принципиальная схема очистного комплекса
- •94 Закономерности и расчет разбавления сточных вод в реках
- •95 Локализация места аварий на воде и на почве
- •Пример бонового заграждения морского ведомства
- •96 Сбор нефти с поверхности воды
- •97 Сбор нефти с поверхности почвы
- •98 Рекультивация земель
- •99 Классификация нс и кс. Размещение основных объектов на территории
- •100 Основное оборудование нс
- •101 Основное оборудование кс
- •102 Технологическая схема нс
- •103 Технологическая схема кс
- •104 Вспомогательное оборудование насосного цеха
- •105 Вспомогательное оборудование компрессорного цеха (маслоснабжение, уплотнения и т.Д)
- •106 Учет нефти и нефтепродуктов
- •107 Системы водоснабжения нс и кс
- •I. Основные сведения по системам водоснабжения
- •1.1. Источники водоснабжения
- •2. Расчет водопотребления
- •2.1. Хозяйственно-питьевое потребление
- •2.2.1. Оборотное водоснабжение
- •2,3 Противопожарное водопотребление
- •5. Гидравлический расчет водопроводных сетей и водоводов
- •49. Полистовой метод монтажа резервуаров.
33 Трубопроводный транспорт твёрдых и сыпучих материалов.
Трубопроводы уже давно применяются для транспортировки твердых и сыпучих материалов на различных предприятиях, т.е. на короткие расстояния. При этом в одних случаях несущей средой является воздух (пневмотранспорт), а в других - вода (гидротранспорт).
Пневмотранспорт применяют при подземной и открытой разработке месторождений для перемещения пылевидных или мелкозернистых полезных ископаемых (угля, фосфатов и др.). На обогатительных фабриках и металлургических заводах этот вид транспорта используется там, где не допускается присутствие людей: при перемещении руд, концентратов, реагентов или катализаторов, а также для подачи угольной пыли на коксохимические заводы и ТЭЦ. Устройства пневматического транспорта используют для разгрузки железнодорожных вагонов от муки, цемента, извести и других пылевидных или мелкозернистых материалов, увлажнение которых нежелательно или недопустимо.
Гидротранспорт песка и гравия широко используется для намыва оснований при строительстве зданий и сооружений, расположенных на слабонесущих грунтах вблизи рек. Данный способ транспорта распространен на обогатительных фабриках с мокрым обогащением, где подача угля, руд или песков в различные обогатительные аппараты, отстойники и отвалы производится в потоке жидкости.
В последние годы резко возрос интерес к транспортировке твердых и сыпучих материалов по трубопроводам на относительно большие расстояния. Это обусловлено тем, что во многих случаях существуют устойчивые однонаправленные грузопотоки угля, руды, щебня и других материалов. Вместо увеличения пропускной способности существующих или строительства новых автомобильных и железных дорог, по которым к тому же в одну сторону транспорт будет совершать порожний пробег, в этих условиях более целесообразно использовать трубопроводы.
К настоящему времени определились три основных способа дальнего трубопроводного транспорта твердых и сыпучих материалов: гидротранспорт, контейнерный (капсульный) гидротранспорт (КПГ) и контейнерный пневмотранспорт (КПТ).
34. Очистка трубопровода от отложений парафина.
В перекачиваемой нефти в малых количествах содержатся механические примеси, растворенный или кристаллический парафин, церезины, асфальтово-смолистые и другие вещества. При перекачке по трубопроводу при определенных условиях эти вещества осаждаются на внутренней поверхности стенки трубопровода, образуя плотные отложения.
По своему составу отложения представляют сложную многокомпонентную среду, включающую твердую и жидкую фазы. Для многих магистральных нефтепроводов массовое содержание компонентов в составе отложений следующее:
парафин и церезины 1060%;
асфальтены 120%;
смолы 535%;
механические примеси до 5%;
вода до 20%.
Основными факторами, влияющими на рост отложений, являются:
режим перекачки нефти по трубопроводу;
физико-химические свойства нефти;
изменение температурного режима транспортируемой нефти по длине трубопровода;
содержание в нефти растворенного газа.
Структура отложений на внутренней поверхности неравномерна. По сечению трубопровода отложения состоят из двух слоев. Первый пристенный слой имеет высокую плотность и почти равномерную толщину. Он состоит в основном из твердых кристаллов парафина. Второй слой, осевший на первом, состоит из рыхлой взвеси и шлама и имеет переменную толщину.
По длине трубопровода толщина отложений также неравномерна. Она убывает по мере удаления от начала трубопровода.
Отложения, образующиеся на стенке трубопровода, представляют плотную (=0,921,14 т/м3), трудно смываемую массу. Они уменьшают живое сечение трубопровода, приводят к значительному снижению пропускной способности, и как следствие, росту энергозатрат на перекачку.
Поддержание пропускной способности трубопровода на заданном уровне осуществляется периодической очисткой его от отложений парафина. Для удаления отложений из трубопровода применяются механические очистные устройства (ОУ) различных конструкций (скребки и разделители). Очистные устройства должны удовлетворять требованиям:
сохранять эффективность очистки на больших расстояниях (иметь высокую износостойкость);
обладать хорошей проходимостью через гнутые участки, колена, задвижки и т. д.;
быть просты по конструкции и дешевы.
В последние годы разработано большое количество разнообразных конструкций очистных скребков и разделителей: поршневые, дисковые, манжетные, шаровые, комбинированные и др. Большинство скребков оснащены чистящими элементами – металлическими щетками или специальными ножами, позволяющими счищать твердые внутритрубные отложения парафина. Движение скребков или разделителей в потоке транспортируемой нефти обеспечивается за счет упругих манжет из маслобензостойкой резины, плотно прилегающих к стенке трубопровода. В ряде случаев в качестве материала манжет использовался полиэтилен. Общим недостатком резиновых и полиэтиленовых манжет является их низкая износостойкость, кроме того манжеты из полиэтилена теряют пластичность при низких температурах. Такие очистные устройства, естественно, не обладали надлежащими чистящими свойствами и зачастую просто «размазывали» скопления отложений по длине нефтепровода, лишь на некоторое время повышая его пропускную способность.
В настоящее время на нефтепроводах АК «Транснефть» широко применяются очистные скребки конструкции Центра технической диагностики «Диаскан» (рис. 1.36).
Рис. 1.36. Очистной скребок конструкции ЦТД «Диаскан»
1 – бампер; 2 – диск ведущий; 3 – диск прокладочный ; 4 – диск чистящий; 5 – манжета поддерживающая; 6 – корпус; 7 – диск чистящий щеточный; 8 – передатчик; 9 – бампер для передатчика.
ЦТД «Диаскан» выпускает скребки для очистки трубопроводов диаметром от 325 до 1220 мм включительно. В качестве чистящих элементов применены диски и манжеты, изготовленные из высококачественного полиуретана, прочность и износостойкость которого в несколько раз выше, чем у резины. Кроме того, скребки комплектуются передатчиком, позволяющим регистрировать их положение по трассе нефтепровода с помощью акустических и низкочастотных локаторов, что позволяет выявлять места сужений трубопровода и облегчает поиск скребков в случае застревания. Несомненным достоинством скребков конструкции «Диаскан» является возможность их дооснащения дополнительными очистными дисками и щеточными блоками для целей специальной очистки (удаления парафина от коррозионных язв и окалины).
Периодичность очистки определяется индивидуально для каждого нефтепровода в зависимости от особенности его эксплуатации и свойств перекачиваемой нефти, но не реже одного раза в квартал с пропуском не менее двух устройств с полиуретановыми дисками. Дополнительная специальная очистка полости трубопровода обязательна для подготовки его к диагностированию внутритрубными инспекционными снарядами.
Пуск и прием очистных скребков (инспекционных снарядов) производится на площадках перекачивающих станций, оборудованных камерами пуска–приема скребка. Камера представляет собой тупиковый участок трубопровода с концевым затвором, диаметр которой на порядок больше линейной части, и технологической обвязки. Принципиальная схема узла пуска–приема очистных устройств показана на рис. 1.37.
Рис.
1. Принципиальная схема узла приема-запуска
очистного устройства
С – сигнализатор; М – манометр; ЕП – емкость подземная для опорожнения камер приема-пуска очистного устройства
