- •1.Классификация магистральных нефтепроводов и газопроводов Классификация нефтепроводов сп 36.13330.2012
- •2. Системы перекачки
- •3. Характеристики насосов, насосных станций и трубопровода. Совмещённая характеристика.
- •Совмещенная характеристика
- •4. Уравнение баланса напоров.
- •Формулы для гидравлического расчета нефтепровода.
- •Потери напора на трение в тп опр-т по формуле Дарси-Вейсбаха
- •5. Определение необходимого числа насосных станций
- •6. Определение наличия перевальных точек по трассе нефтепровода
- •7. Расчет трубопроводов при заданном расположении насосных станций
- •8.Расчет коротких трубопроводов
- •9. Нефтепроводы со сбросами
- •10 Регулирование режима работы насосных станций.
- •1Изменение параметров нпс:
- •2Изменение параметров тр-да
- •Методы, связанные с изменением параметров трубопровода:
- •11. Основные формулы для гидравлического расчета газопровода
- •12. Температурный режим газопровода
- •13. Изменение давления по длине гп. Среднее давление.
- •Среднее давление в газопроводе
- •14. Определение зоны возможного гидратообразования в гп.
- •15. Защита трубопроводов от коррозии
- •16. Целесообразность последовательной перекачки
- •17. Приближенная теория смесеобразования
- •18. Влияние различных факторов на процесс смесеобразования и борьба с ним
- •Влияние скорость перекачки
- •Влияние остановок перекачки
- •Влияние конструктивных особенностей обвязки перекачивающих станций
- •Влияние объема партий перекачиваемых жидкостей
- •Влияние соотношения вязкостей жидкостей
- •19. Прием и реализация смеси на конечном пункте трубопровода
- •Прием всей смеси в один резервуар
- •Деление смеси пополам
- •Прием всей смеси в один чистый нефтепродукт
- •Деление смеси на три неравные части
- •20. Особенности гидрав-го расчета при последовательной перекачке Определение числа перекачивающих станций
- •Определение числа циклов последовательной перекачки
- •Определение необходимого объема резервуарной емкости
- •21. Изменение давления нпс и расхода при замещении одного нефтепродукта другим.
- •Изменение давления на выходе перекачивающей станции
- •Изменение давления в линейной части трубопровода
- •22. Контроль за последовательной перекачкой
- •Контроль смеси по изменению плотности
- •Контроль смеси по скорости распространения ультразвука
- •Контроль смеси по оптической плотности
- •Контроль смеси с помощью индикаторов
- •23. Реологические свойства вязких и застывающих нефтей
- •24. Способы перекачки вязких и застывающих нефтей
- •Гидроперекачка
- •Перекачка с предварительным улучшением реологических свойств нефтей за счет механического воздействия
- •25. Исходные данные для теплового и гидрав-го расчета
- •26. Тепловой расчёт горячих трубопроводов
- •27. Гидравлический расчет горячих трубопроводов
- •28. Оптимальная температура подогрева
- •29. Прогрев горячих тп перед пуском
- •30. Замещение высоковязких нефтей маловязкой жидкостью при остановках горячей перекачки.
- •31. Трубопроводный транспорт нефти и газа в двухфазном сост-и
- •32. Трубопроводный транспорт газонасыщенных нефтей
- •33 Трубопроводный транспорт твёрдых и сыпучих материалов.
- •34. Очистка трубопровода от отложений парафина.
- •35. Нагрузки и воздействия Расчет толщины стенки трубопровода.
- •36. Проверка трубопровода на прочность и деформацию
- •37. Разделение т/п и их лч на категории.
- •38. Очистка внутренней полости и испытание т/п после сооружения
- •39. Подводные переходы (подготовительные работы, способы пригрузки, расчет устойчивости).
- •40. Проверочный расчет фундаментов под основное оборудование на статические и динамические нагрузки.
- •41 Выверка оборудования при его монтаже на фундаменте
- •Установочными болтами: Более эффективным способом выверки в вертикальной плоскости является бесподкладочный (с помощью установочных болтов).
- •42 Монтаж подшипников агрегатов.
- •Подшипники скольжения.
- •Подшипники качения.
- •43. Центровка полумуфт и валов агрегатов по полумуфтам.
- •2) По полумуфтам при помощи двух радиальных стрелок (рис.3, б):
- •44. Пусконаладочные работы Правила технической эксплуатации и требования безопасности труда в газовом хозяйстве Российской Федерации:
- •45. Сварочно-монтажные работы при сооружении мт
- •1Ручная электродуговая сварка
- •Допустимая плотность тока при ручной электродуговой сварке, а/мм2
- •2Механизированная электродуговая сварка
- •46, Контроль формы резервуара после монтажа. Испытание резервуара.
- •47 Классификация аварий на мт и мг. Виды отказов.
- •48 Контроль изоляционных покрытий магистрального трубопровода.
- •49Полистовой метод монтажа резервуаров
- •50 Капитальный ремонт линейной части трубопроводов (подготовительные, виды и схемы ремонта трубопроводов). Последовательность операции при ремонте.
- •51 Ликвидация аварий на трубопроводах.
- •52 Ремонт основного технологического оборудования нс (дефекты и ремонт цбн).
- •53 Ремонт фундаментов под резервуары.
- •54 Ремонт днища резервуара
- •55 Ремонт корпуса и крыши рвс
- •56Типы и категории нб и технологические операции, проводимые на них Основные сведения по нб
- •Типы, группы и категории нб
- •Технологические операции нб
- •57 Определение потерь напора в напорных трубопроводах нб
- •58. Расчет сифонных трубопроводов
- •59.Определение необходимой емкости резервуарного парка нб
- •60.Классификация резервуаров. Конструкция резервуаров типа рвс
- •Стальные резервуары низкого давления
- •Вертикальные стальные цилиндрические резервуары
- •61.Приемо-раздаточное оборудование резервуаров
- •62.Дыхательная арматура резервуаров
- •63.Замерное оборудование резервуаров
- •64.Трубопроводы нефтебаз и трубопроводная арматура
- •65.Железнодорожные тупики, эстакады, цистерны и сливо-наливные устройства
- •Сливные устройства
- •Способы слива/налива нефтепродуктов
- •66.Нефтяные гавани, причальные сооружения, нефтеналивные суда и устройства Нефтеналивные суда
- •67.Виды потерь н/пр от испарения из резервуаров Источники и классификация потерь н/пр и нефтей
- •Об испаряемости н/пр и нефтей
- •Потери от испарения, вызванные малым дыханием резервуара
- •Потери, обусловленные большими дыханиями резервуара
- •Определение потерь при обратном выдохе
- •Мероприятия по сокращению потерь н/пр и нефтей от испарения
- •68.Технические мероприятия по сокращению потерь от испарения из резервуаров
- •Применение понтонов
- •69. Назначение и способы подогрева н/пр в резервуарах, транспортных емкостях и трубопроводов Использование тепла на нб
- •Теплоносители и источники тепла
- •Способы и средства подогрева в резервуара
- •Способы и средства подогрева транспортных емкостей
- •Средства и способы подогрева технологических тп и арматуры
- •70.Определение вероятной температуры н/пр в конце хранения или транспортировки
- •Расчет трубчатых подогревателей
- •Расчет электроподогревателей
- •71. Расчетные часовые расходы газа. Коэффициент часового максимума. Коэффициент одновременности.
- •72 Методы расчета тупиковой газораспределительной сети
- •73 Метод «предельной выгоды» при расчете диаметров тупиковой сети.
- •74 Принцип расчета кольцевых сетей
- •75 Методика гидравлической увязки кольцевой сети
- •76 Регуляторы давления газа. Классификация регуляторов давления
- •77 Расчет пропускной способности регуляторов давления
- •79. Схема и принцип действия рдук-2
- •80Температурный режим грс.Борьба с гидратообраз-ем наГрс.
- •81 Состав сжиженных углеводородных газов
- •82. Железнодорожные цистерны. Ж.Д транспорт суг
- •83 Хранение суг. Классификация хранилищ суг
- •84 Емкости для хранения суг под давлением.
- •Низкотемпературное хранение суг.
- •86 Технологическая схема пхг
- •87 Характеристика сточных вод нб и пс и их загрязнений
- •88 Методы, процессы и средства очистки нефтесодержащих сточных вод
- •89 Сооружения механической очистки сточных вод
- •90 Сооружения физико-химической очистки сточных вод Флотационные установки
- •91 Сооружения биологической очистки сточных вод
- •92 Вспомогательные устройства в комплексе очистных станций
- •Буферный резервуар
- •Шламонакопители
- •93 Принципиальная схема очистного комплекса
- •94 Закономерности и расчет разбавления сточных вод в реках
- •95 Локализация места аварий на воде и на почве
- •Пример бонового заграждения морского ведомства
- •96 Сбор нефти с поверхности воды
- •97 Сбор нефти с поверхности почвы
- •98 Рекультивация земель
- •99 Классификация нс и кс. Размещение основных объектов на территории
- •100 Основное оборудование нс
- •101 Основное оборудование кс
- •102 Технологическая схема нс
- •103 Технологическая схема кс
- •104 Вспомогательное оборудование насосного цеха
- •105 Вспомогательное оборудование компрессорного цеха (маслоснабжение, уплотнения и т.Д)
- •106 Учет нефти и нефтепродуктов
- •107 Системы водоснабжения нс и кс
- •I. Основные сведения по системам водоснабжения
- •1.1. Источники водоснабжения
- •2. Расчет водопотребления
- •2.1. Хозяйственно-питьевое потребление
- •2.2.1. Оборотное водоснабжение
- •2,3 Противопожарное водопотребление
- •5. Гидравлический расчет водопроводных сетей и водоводов
- •49. Полистовой метод монтажа резервуаров.
25. Исходные данные для теплового и гидрав-го расчета
Проектирование нефтепровода выполняется на основании проектного задания, в котором указываются:
начальный и конечный пункт трубопровода;
потребность в перекачке нефти (на перспективу);
пропускная способность в целом по системе и по участкам;
размещение пунктов путевых сбросов (подкачек) нефти;
сроки ввода в эксплуатацию нефтепровода по очередям строительства.
Трасса магистрального нефтепровода должна быть максимально приближена к геодезической прямой, однако, как правило, на практике это не представляется возможным.
Основными параметрами для технологического расчета являются:
Расчетная температура транспортируемой нефти, принимаемая равной минимальной среднемесячной температуре грунта на глубине заложения оси трубопровода с учетом начальной температуры нефти на головных сооружениях, тепловыделений в трубопроводе, обусловленных трением потока, и теплоотдачи в грунт.
(1.1)
где L – полная протяженность нефтепровода; li – длина i-го участка с относительно одинаковой температурой Ti; n – число участков.
Плотность нефти определяются на основании лабораторных анализов либо из справочных данных. Расчетная плотность при температуре Т=ТР определяется по формуле
(1.2)
где – температурная поправка, кг/(м3∙К), =1,825 – 0,001315293 ;
293 – плотность нефти при 293К, кг/м3.
Расчетная кинематическая вязкость нефти определяется при расчетной температуре по вязкостно-температурной кривой, либо по одной из следующих зависимостей: формула Вальтера (ASTM)
(1.3)
где Т – кинематическая вязкость нефти, мм2/с;
А и В – постоянные коэффициенты, определяемые по двум значениям вязкости 1 и 2 при двух температурах Т1 и Т2
формула
Филонова-Рейнольдса
(1.4)
где u – коэффициент крутизны вискограммы, 1/К
Расчетное число рабочих дней магистрального нефтепровода NР определяется с учетом затрат времени на техническое обслуживание, ремонт и ликвидацию повреждений. В числителе указаны значения NР для нормальных условий прокладки, в знаменателе – при прохождении нефтепроводов в сложных условиях (заболоченные и горные участки, доля которых в общей протяженности трассы составляет не менее 30%).
Механические (прочностные) свойства трубной стали, необходимые для определения толщины стенки нефтепровода.
Укрупненные технико-экономические показатели: стоимость линейной части и оборудования ПС, стоимость электроэнергии, отчисления на амортизацию, текущий ремонт и собственные нужды, заработная плата персонала и т. д.
26. Тепловой расчёт горячих трубопроводов
Подогретая нефть, двигаясь по трубопроводу, отдает тепло в окружающую среду и постепенно остывает. Выделим на расстоянии х от начала трубопровода участок длиной dx и составим для него уравнение теплового баланса (рис. 2.13).
Рис.
2.13. Схема к выводу закона изменения
температуры нефти по длине трубопровода
При движении нефти через рассматриваемый участок она охладится на dT и потеряет в единицу времени количество тепла (изменение теплосодержания)
,
где M - массовый расход;
ср - теплоемкость нефти.
Знак “минус” учитывает, что температура нефти по мере удаления от пункта подогрева уменьшается ( dT 0 ).
Изменение температуры нефти в трубопроводе происходит по следующим причинам:
-
отдача тепла в окружающую среду
;
-
нагрев нефти вследствие выделения тепла
трения
;
- нагрев нефти вследствие выделения из нее кристаллов парафина
,
где К - полный коэффициент теплопередачи от нефти в окружающую среду;
D - внутренний диаметр отложений в трубопроводе;
Т - температура нефти в сечении x;
То - температура окружающей среды;
i - средний гидравлический уклон;
- массовая доля парафина в нефти;
- теплота кристаллизации парафина;
Тнп, Ткп - температуры соответственно начала и конца выпадения парафина.
Соответственно уравнение теплового баланса для нефти, находящейся в участке трубы длиной dx, примет вид
.
(2.12)
Разделяя переменные, получим
.
(2.13)
Интегрируя
левую часть уравнения (2.13) от 0 до x, а
правую от Тн
до Т(х), после ряда преобразований
получим
,
(2.14)
где ,
а - расчетные коэффициенты
;
.
Из формулы (2.14) как частный случай ( = 0, = 0 ) получается формула Шухова.
Характер изменения температуры нефти в трубопроводе при различных сочетаниях и приведен на рис. 2.14.
Из рис. 2.14 видно, что вследствие выделения тепла трения температура нефти несколько превышает температуру окружающей среды. Чем больше в нефти парафина, тем медленнее она остывает.
Полный коэффициент теплопередачи, входящий в формулу (2.14), определяется из уравнения
,
(2.15)
где i, Di, Di+1 - коэффициент теплопроводности, внутренний и наружный диаметры i-того слоя (отложений, трубы, изоляции);
1 - внутренний коэффициент теплоотдачи, характеризующий
теплоперенос от нефти к внутренней поверхности отложений;
2 - внешний коэффициент теплоотдачи, характеризующий
теплоперенос от внешней поверхности изоляции в окружающую
среду;
Dиз - наружный диаметр изоляции.
Внутренний коэффициент теплоотдачи определяется по формуле
,
где н - коэффициент теплопроводности нефти.
Величина числа Нуссельта определяется по экспериментальным формулам в зависимости от режима перекачки, например, по Михееву:
- при ламинарном режиме (Re 2000)
,
при турбулентном режиме (Re 10000)
Re, Pr< Gr - числа Рейнольдса, Прандтля и Грасгофа
;
;
;
t - коэффициент температурного расширения;
Тw - средняя температура стенки трубопровода.
В переходной области 2000 Re 10000 величина коэффициента 1 определяется интерполяцией.
Внешний коэффициент теплоотдачи определяется по формуле Аронса - Кутателадзе
,
(2.16)
где Hп - приведенная глубина заложения трубопровода,
;
Н - фактическая глубина заложения;
Нсн - высота снежного покрова;
гр, сн - коэффициент теплопроводности соответственно грунта
и снега;
Nu
- число Нуссельта при теплоотдаче в
воздух,
;
o - коэффициент теплоотдачи от поверхности грунта в воздух,
o 11,63 Вт/(мград).
При H/Dиз 2 вторым слагаемым под знаком логарифма можно пренебречь. Данное равенство выполняется в случае, когда Dиз 600 мм.
Для трубопроводов без специальной тепловой изоляции прокладываемых в грунтах малой влажности, при турбулентном режиме течения с малой погрешностью можно принять К 2.
Из вышеприведенных формул видно, что при проектировании “горячих” трубопроводов дополнительно надо располагать данными о коэффициенте теплопроводности грунта, а также о теплоемкости и коэффициенте теплопроводности нефти.
