Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1_OTREDAKTIROVANO_Shpory_k_GOSEKZAMENAM.docx
Скачиваний:
4
Добавлен:
01.07.2025
Размер:
4.05 Mб
Скачать

Контроль смеси по изменению плотности

Контроль за прохождением смеси по изменению плотности производят в том случае, когда разность плотностей контактирующих жидкостей достаточно велика.

Плотность смеси жидкостей А и Б определяется по правилу аддитивности

,

где - плотности чистых жидкостей А и Б;

КА, КБ - их концентрации в смеси.

Концентрации жидкостей А и Б в любом сечении связаны формулой

КА + КБ = 1.

Если непрерывно измерять см, то при заданных величинах , и с учетом, что КБ = 1 - КА, нетрудно найти мгновенные концентрации чистых жидкостей в рассматриваемом сечении

. (1.14)

Для непрерывного (автоматического) измерения плотности перекачивающей жидкости создан ряд приборов.

На рис. 1.12 приведена принципиальная схема поплавкового плотномера конструкции НИИТранснефть. Он состоит из корпуса 1, поплавка 2, узла стабилизации положения поплавка (петля 3, эбонитовый стержень 4, сосуд с ртутью 5) и узла фиксации его перемещений (плунжер 6, трубка из немагнитного материала 7, катушка индуктивности 8, вторичный прибор 9).

Плотномер рекомендуется устанавливать на байпасе перед перекачивающей станцией или конечным пунктом. Перед прибором размещается фильтр, из которого очищенная жидкость по двум патрубкам 10 поступает в плотномер.

С изменением плотности жидкости, проходящей через плотномер, изменяется величина архимедовой подъемной силы, действующей на поплавок. В результате поплавок 2 вместе с петлей 3 и плунжером 6 получает вертикальное перемещение. Для того чтобы это перемещение находилось в определенных пределах, служит узел стабилизации положения поплавка, действие которого также основано на использовании архимедовой силы. Предположим, что плотность смеси стала меньше и поплавок опускается. При этом стержень 4, жестко связанный с петлей 3 опускается в сосуд с ртутью.

Рис. 1.12. Поплавковый плотномер конструкции НИИ Транснефть

1- корпус; 2- поплавок; 3- петля; 4- эбонитовый стержень; 5- сосуд со ртутью; 6- плунжер; 7- трубка из немагнитного материала; 8- катушка индуктивности; 9- вторичный прибор

За счет разности плотностей ртути и эбонита возникает выталкивающая сила, препятствующая дальнейшему опусканию стержня, а, следовательно, и поплавка. При повышении плотности жидкости картина обратная.

Каждому значению плотности жидкости соответствует определенное положение плунжера 6, жестко связанного с поплавком 2. Перемещение плунжера относительно индуктивной катушки 8 приводит к изменению показаний вторичного прибора 9, которые оттарированы в единицах плотности. Обмотка катушки 8 имеет несколько выводов, благодаря которым можно менять чувствительность плотномера посредством переключения катушки на различное число витков. Вторичный прибор может находиться на расстоянии до 250 м от плотномера.

Кроме приборов поплавкового типа для измерения плотности применяются также приборы, основанные на принципе взвешивания исследуемого продукта и сравнения с эталонной жидкостью, а также приборы, в которых измеряется частота колебаний специальных вибраторов в зависимости от плотности перекачиваемой жидкости. Эти приборы применяются для измерения плотности от 685 до 904 кг/м3 с погрешностью не более 2,2 кг/м3.

Еще один метод контроля плотности перекачиваемой среды - это применение гамма-плотномеров (ПЖР). В основу метода измерения плотности положено свойство поглощения перекачиваемой жидкостью гамма-квантов радиоактивного излучения. Источник гамма-излучения и его приемник помещаются на диаметрально противоположных сторонах снаружи трубопровода. Ослабление интенсивности гамма-излучения при прохождении через жидкость находится в прямой зависимости от ее плотности. Зная действительную активность источника излучения и замерив активность излучения после поглощения части гамма-лучей, можно перевести результаты измерений в единицы плотности.

В гамма-плотномерах промышленного назначения наибольшее распространение в качестве источников радиоактивного излучения получили радиоизотопы кобальта-60 и цезия-137. В качестве приемников излучения применяются сцинтилляционные и газоразрядные счетчики.

Возникающие в счетчике электрические импульсы суммируются, усиливаются и подаются на вторичный прибор телеметрической системы.

Плотномер измеряет плотности в диапазоне 700...900 кг/м3 и достаточно точно контролирует движение смеси по трубопроводу.

Метод контроля последовательной перекачки с помощью гамма-плотномеров позволяет следить за прохождением смеси продуктов без непосредственного контакта с потоком жидкости, находящейся в трубопроводе.

В вибрационном АИП (рис. 1.13) контролируемый продукт поступает на вход вибрационного преобразователя 1 и с помощью распределителя 4 разветвляется на два потока, проходящих по трубкам 9 чувствительного элемента.

На распределителе установлены платиновые термопары сопротивления 5, введенные в поток для коррекции показаний при изменении температуры контролируемого продукта. Между распределителем и трубками расположены сифоны 2, устраняющие температурные напряжения и влияние вибрации корпуса на показания прибора. Изменение жесткости сильфонов в широких пределах не сказывается на изменении плотности. На корпусе вибрационного преобразователя предусмотрен влагопоглотитель 6, предотвращающий конденсацию влаги на трубках при понижении температуры продукта. Трубки, соединенные системой упругих перемычек 7 и 8, образуют совместно с ними механическую колебательную системы – вибратор. Механическая колебательная система вибрационного преобразователя выполнена в виде так называемого двойного камертона, образованного соединенными на концах трубками проточной системы.

Частота собственных колебаний камертона зависит от массы, т.е. от плотности протекающей по трубкам жидкости. Частота колебаний прибора составляет около 1250 Гц при порожней проточной системе, а при ее заполнении жидкостью плотностью 1000 кг/м3 частота колебаний уменьшается до 1000 Гц.

Для возбуждения и стабилизации амплитуды механических колебаний используют специальный полупроводниковый усилитель 3, соединенный с воспринимающими и возбуждающими колебания электромагнитами 10, расположенными между трубками 9.

Конструкция вибратора дает возможность проводить в нужных пределах настройку частоты собственных колебаний вибратора: грубо – путем регулировки положения центральных перемычек 8; точно – периферийными перемычками 7, Вибрационный преобразователь соединяется со вторичной аппаратурой 12 через блок питания 11. Расстояние передачи сигнала от преобразователя до вторичного прибора не более 1000 м.

Контроль смеси по изменению плотности не всегда приемлем, т.к. нередко производится последовательная перекачка нефтепродуктов близкой плотности.

Контроль смеси по величине диэлектрической постоянной

Диэлектрические постоянные нефтепродуктов различаются. У бензинов она составляет от 1,829 до 1,942, у керосина - от 1,989 до 2,088, у дизтоплива - от 2,054 до 2,097.

Грозненским филиалом ВНИИКА нефтегаза разработан прибор СК-2, позволяющий контролировать прохождение смеси, используя принцип регистрации изменения диэлектрической проницаемости перекачиваемой жидкости (рис. 1.14). Для этого в трубопровод вмонтированы датчики 1 и 2 емкостного типа коаксиальной конструкции.

Датчик 1 - “проточный”: он имеет перфорированный кожух и регистрирует изменение диэлектрической проницаемости жидкости, находящейся в данном сечении трубопровода, преобразуя ее изменения в изменения электрической емкости. Датчик 2 - “компенсационный”. Он имеет герметичный корпус, заполненный очищенным трансформаторным маслом. Температура масла в этом датчике принимает то же значение, что и температура перекачиваемой жидкости в проточном датчике. Его электрическая емкость меняется лишь с изменением температуры жидкости в трубопроводе, что используется для компенсации температурной погрешности измерения датчиком 1. Вторая пара аналогичных датчиков монтируется на трубопроводе на расстоянии от первой пары, превышающем максимальную длину зоны смеси (~ 5 км). Каждая пара датчиков соединяется с сопоставителем емкостей 3.

Сопоставитель емкостей осуществляет непрерывное сравнение (сопоставление) электрических емкостей обоих датчиков, вырабатывая на выходе сигнал, частота которого зависит от разности электрических емкостей проточного и компенсационного датчиков. Сигнал с сопоставителей 3 идет на вторичные приборы (усилители, преобразователи и др.), в которых он преобразуется в напряжение, фиксируемое потенциометрами. Установку нулевой и 100 % концентрации одной из жидкостей (например, жидкости А) оператор производит в тот момент, когда каждая пара датчиков заполнена чистой, но разной жидкостью, например, через одну проходит бензин, а через другую - дизтопливо. Таким образом, при дальнейшем прохождении смеси через вторую пару датчиков потенциометр будет показывать (и писать) концентрацию в смеси одной из чистых жидкостей.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]