Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1_OTREDAKTIROVANO_Shpory_k_GOSEKZAMENAM.docx
Скачиваний:
3
Добавлен:
01.07.2025
Размер:
4.05 Mб
Скачать

13. Изменение давления по длине гп. Среднее давление.

Рассмотрим участок газопровода протяженностью L, с давлением в начале PН и конце участка PК (рис 2.3).

Рис. 2.3. Расчетная схема газопровода

Если газопровод не имеет сбросов и подкачек, то массовый расход газа в нем неизменен. На этом основании можно записать

, (2.32)

откуда следует , (2.33)

где x, PX – соответственно расстояние от начального пункта газопровода до произвольного сечения и давление в этом сечении.

Освобождаясь от знаменателей и решая (2.33) относительно Px, получим формулу распределения давления по длине газопровода

. (2.34)

Зависимость (2.33) является уравнением параболы (рис. 2.4). По мере удаления от начала газопровода, интенсивность падения давления возрастает. Это объясняется тем, что с понижением давления уменьшается плотность газа. В соответствии с уравнением неразрывности, при уменьшении плотности газа увеличивается скорость его движения, то есть возрастают потери на трение и, следовательно, возрастает гидравлический уклон. Таким образом, потери давления на трение пропорциональны квадрату скорости газа.

С увеличением расстояния между компрессорными станциями возрастают удельные потери давления, а значит, и потери энергии на перекачку газа. Следовательно, для уменьшения удельных энергозатрат на перекачку газа – одной из основных статей эксплуатационных расходов на газопроводах, целесообразно работать с высокими давлениями на входе КС. Несмотря на то, что при этом возрастает количество компрессорных станций, экономия энергозатрат весьма существенна.

Среднее давление в газопроводе

Среднее давление газа в газопроводе необходимо для определения его физических характеристик, а также для нахождения количества газа, заключенного в объеме трубопровода.

Поскольку изменение давления по длине газопровода происходит по закону параболы (рис. 2.5), то среднее давление необходимо определять как его среднеинтегральное значение

. (2.35)

Рис. 2.5. Среднее давление в газопроводе

Введем новую переменную . (2.36)

Тогда , (2.37)

откуда . (2.38)

Подставляя (2.36) и (2.38) в исходное выражение (2.35), получим

. (2.39)

Найдем пределы интегрирования

Следовательно, среднее давление в газопроводе составит

. (2.40)

14. Определение зоны возможного гидратообразования в гп.

Нормальная эксплуатация магистрального газопровода может быть обеспечена при качественной осушке природного газа на промысловых пунктах подготовки. Наличие влаги в газе при некачественном ее отделении часто является причиной образования газовых гидратов.

Гидраты газов представляют собой кристаллические соединения, образованные ассоциированными молекулами углеводородов и воды и имеющие строго определенную структуру. Состав гидратов выражается формулой CnH2n+2mH2O: CH46H2O; C2H67H2O; C3H818H2O. Внешне гидраты напоминают кристаллы льда или мокрый спрессованный снег. Скопления гидратов в линейной части газопроводов могут вызвать частичную или полную их закупорку и тем самым нарушить нормальный режим работы магистрали.

На процесс образования гидратов влияет состав транс­портируемого газа, содержание воды, давление и температура. Обязательными условиями существования гидратов является снижение температуры газа ниже точки росы, при которой происходит конденсация паров воды (наличии капельной влаги в газе), а также ниже температуры равновесного состояния гидратов.

Для обнаружения зоны возможного гидратообразования необходимо знать влагосодержание и плотность транспортируемого газа, а также его температуру и давление. Для заданного участка в принятых масштабах строятся кривые изменения давления 1 и температуры 2 по длине газопровода. На этот же график наносятся кривые точки росы 3 и равновесной температуры гидратообразования 4 (рис. 2.20).

Рассмотрим в качестве примера определение зоны возможного гидратообразования в

газопроводе протяженностью L.

Пусть AM – линия точки росы, которая в точке M совпадает с температурой газа в газопроводе. Так как газ на участке AM имеет температуру выше точки росы T(L)>TР(L), то он будет недонасыщенным, и следовательно в самом начале газопровода (зона I) влага выпадать не будет.

В точке M температура газа T(L) равна температуре точки росы TР(L). Это соответствует началу конденсации влаги на стенке газопровода (зона II). Однако, при снижении температуры от точки M до точки B гидраты образовываться не могут, так как температура газа в газопроводе T(L) выше равновесной температуры гидрато­образования TРГ(L). В точке B температура газа становится равной равновесной температуре гидратообразования T(L)=TРГ(L). Следовательно, начиная с точки B, в газопроводе могут образовываться гидраты (зона III). Зона возможного гидратообразования будет распространяться до точки C, поскольку за ней температура газа становится выше равновесной температуры гидратообразования T(L)>TРГ(L) и гидраты существовать уже не могут.Участок CE соответствует наличию капельной влаги в газе и на стенках трубопровода, так как выполняется условие T(L)<TР(L).Для построения графиков TРГ(L) и TР(L) можно воспользоваться и эмпирическими зависимостями.Температура, при которой газовые гидраты находятся в термодинамическом равновесии, рассчитывается из условий:

; (2.129)

, (2.130)

где P – давление газа в рассматриваемом сечении газопровода, МПа;

PГР – величина граничного давления, соответствующая критической температуре существования гидратов и равной 273 К, определяемая по формуле ; (2.131)

F0 и F1 – функции приведенной плотности газа , которые могут быть рассчитаны из соотношений

; (2.132)

. (2.133)

Приведенная плотность газа вычисляется по формуле , (2.134)

где k – число гидратообразующих компонентов в газовой смеси;

ai – объемная доля i-го гидратообразующего компонента в исходном газе;

i – относительная плотность i-го гидратообразующего компонента.

К гидратообразующим компонентам относятся CH4, C2H6, C3H8, C4H10, CO2 и H2S. Азот, редкие газы (аргон, гелий) и нормальные углеводороды от пентана и выше не относятся к гидратообразующим.

Температура газа, соответствующая точке росы, может быть найдена по формуле . (2.135)

где W – влагосодержание насыщенного газа, г/м3.

Для определения влагосодержания насыщенного газа наиболее удобна формула Бюкачека [12] , (2.136)

где P – давление газа, МПа;

A, B – коэффициенты, зависящие от температуры газа;

C – поправка на плотность газа;

CS – поправка на соленость воды.

В условиях магистрального газопровода значения поправок C и CS можно принять равными единице. Значения коэффициентов A и B могут быть представлены уравнениями

; (2.137)

. (2.138)

где T – температура газа в рассматриваемом сечении, К;

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]