- •1.Генетическая классификация горных пород. Влияние условий образования на структуру и свойства горных пород.
- •2.Породообразующие минералы магматических горных пород: химический состав, свойства.
- •3.Магматические горные породы: механизмы образования, особенности строения, минеральный состав, свойства, применение в строительстве.
- •4.Породообразующие минералы осадочных горных пород: химический состав, свойства.
- •6.Метаморфические горные породы: условия образования, особенности строения, минеральный состав, свойства, применение в строительстве.
- •7.Состав, макро- и микроструктура древесины.
- •8.Физико-механические свойства древесины.
- •9. Влажность древесины и её влияние на свойства древесины.
- •10. Глины: условия образования, составы и основные свойства глин.
- •11. Добавки, применяемые в производстве строительной керамики.
- •12. Основы технологии изделий строительной керамики.
- •13. Физико-химические процессы, протекающие в сырье при его обжиге.
- •14. Гипсовые вяжущие вещества: сырье, производство, технические свойства, применение в строительстве.
- •15. Твердение гипсового теста.
- •16. Известь строительная воздушная: сырье, производство, технические свойства, применение в строительстве. Твердение известкового теста.
- •17. Основы технологии портландцемента.
- •18. Минеральный состав портландцементного клинкера, характеристики клинкерных минералов и их влияние на свойства портландцемента.
- •19. Технические свойства портландцемента.
- •20. Твердение цементного теста. Состав и строение цементного камня.
- •21.Коррозия цементного камня и способы замедления процессов разрушения камня.
- •22.Разновидности портландцемента. Быстротвердеющий, сульфатостойкий, белый и цветные.
- •23.Активные минеральные добавки. Смешанные цементы, их свойства и применение в строительстве.
- •25.Определение бетонов и их классификация.
- •26. Состав тяжелого бетона, роль и свойства компонентов тяжелого бетона.
- •27. Алгоритм подбора состава тяжелого бетона.
- •28. Свойства бетонной смеси. Зависимость свойств бетонной смеси от различных факторов.
- •29. Основы технологии тяжелого бетона.
- •30. Свойства тяжелого бетона: пористость, морозостойкость, водонепроницаемость, тепловыделение, усадка и набухание.
- •31. Прочность тяжелого бетона, факторы, влияющие на прочность.
- •32. Легкий бетон на пористых заполнителях: состав, особенности технологии, свойства, применение в строительстве.
- •33. Ячеистые бетоны: классификация, основы технологии, свойства, применение в строительстве
- •34.Строительные растворные смеси : состав, свойства. Сухие растворные смеси
- •35.Строительные растворы: классификации, свойства и методики определений
- •36.Определение битума. Химический и групповой составы, структура битумов
- •37. Основные типы битумов, применяемых в строительстве и их технические свойства.
- •38.Жидкие битумы и битумные эмульсии : состав, применение в строительстве
- •39. Рулонные кровельные и гидроизоляционные материалы на основе битумов.
- •40. Горячие и холодные битумные мастики, их состав и сравнительные характеристики.
- •41. Состав и свойства пластмасс. Их достоинства и недостатки. Разновидности материалов и изделий, получаемых из строительных пластмасс.
- •42. Типы полимеров и наполнителей, используемых в строительных пластмассах.
- •43. Классификация и свойства теплоизоляционных материалов
- •44. Теплоизоляционные материалы, применяемые в современном строительстве и их характеристика.
- •45. Отделочные материалы и их основные компоненты. Свойства лакокрасочных материалов.
- •46. Разновидности красок, применяемых в строительстве
- •47. Методика определения твердости красочных составов.
- •48. Методика определения прочности при ударе красочного покрытия.
- •49.Методика определения средней плотности материалов.
- •50. Методика определения нормальной густоты гипсового вяжущего.
- •51. Методика определения вспучиваемости вермикулита-сырца.
- •52. Методика определения насыпной плотности сыпучих материалов.
- •53. Методика определения скорости высыхания лака.
- •54. Методика определения укрывистости красочного покрытия.
- •55. Методика определения истинной плотности материалов.
- •56.Методика определения водопоглощения материалов.
- •57. Методика определения прочностных характеристик гипсового камня.
- •5 8. Методика определения пористости материалов.
- •60. Метод определения маслоемкости пигмента.
- •61. Методика определения растяжимости битума.
- •62. Методика определения соответствия госТу мелкого заполнителя для тяжелого бетона.
- •63. Методика определения нормальной густоты портландского цемента.
- •64. Методика определения истираемости.
- •65. Методика определения сроков схватывания портландского цемента.
- •66. Методика изготовления стандартных образцов для определения марки цемента.
- •67. Методика определения температуры размягчения битума.
- •68. Методика определения вязкости битума.
- •69. Методика определения прочностных характеристик древесины.
- •70. Методы определения соответствия стандарту крупного заполнителя для тяжелого бетона.
- •71. Методика определения марки керамического кирпича.
69. Методика определения прочностных характеристик древесины.
Механические свойства древесины существенно зависят от влажности, причем влияние оказывает только гигроскопичная влага.
Предел прочности древесины при сжатии вдоль волокон определяют при испытании стандартных образцов в форме призмы размером 20*20*30 мм. Образцы установленные между плитами пресса доводят до разрушения непрерывно и равномерно возрастающей нагрузкой, после чего предел прочности вычисляют по формуле
δ=Pмакс/ab
предел прочности древесины при сжатии поперек волокон составляет примерно от 0,1 до 0,3 предела прочности при сжатии вдоль волокон.
Древесина характеризуется высокой прочностью при растяжении вдоль волокон, в 2-3 раза превышающей прочность при сжатии вдоль волокон, и очень низкой прочностью при растяжении поперек волокон.
Прочность древесины при статическом изгибе определяют на образцах балочках поперечным сечением 20*20 мм и длиной 300 мм.Предел прочности древесины при действии сосредоточенной силы в середине
δ=3РмаксL/(2bh^2)
при действии двух сосредоточенных симметрично расположенных сил δ=РмаксL/(bh^2), L-расстояние между центрами опор, b и h-ширина и высота сечения.
70. Методы определения соответствия стандарту крупного заполнителя для тяжелого бетона.
Крупный заполнитель
В качестве крупного заполнителя для тяжелого бетона могут применяться материалы естественного и искусственного происхождения.
Крупный заполнитель должен отвечать требованиям ГОСТ 8267—75, ГОСТ 10260—74 *, ГОСТ 8268—74, ГОСТ 10268—80, ГОСТ 5578—76.
В качестве заполнителя допускается также применение промышленных отходов и хвостов, получаемых при переработке и обогащении руд черных и цветных металлов, асбеста, различных флюсов, шлаков, некондиционных и бракованных бетонных и железобетонных изделий при положительных результатах испытаний и технико-экономическом обосновании.
Не допускается применять щебень из осадочных пород с примесью мергеля или аморфного кремнезема, разрушающихся при воздействии атмосферных агентов или щелочей, содержащихся в цементе.
Не допускается применять природную гравийно-песчаную смесь без ее рассева на песок и гравий, а также гравий, содержащий в своем составе зерна глинистого сланца, легкоразрушающиеся при насыщении их водой и замораживании.
Наибольшая крупность щебня и гравия бетонной смеси не должна превышать 1/2 толщины плиты при бетонировании плоских изделий; 3/4 наибольшего расстояния в свету между стержнями арматуры при изготовлении железобетонных конструкций; 1/6 наименьшего размера поперечного сечения бетонируемой конструкции при подвижном виброформовании; 2/5 внутреннего диаметра бетоновода для гравия и 1 / 3 – для щебня; 1/З внутреннего диаметра хоботов или виброхоботов при использовании их для подачи бетонной смеси.
Крупный заполнитель для тяжелого бетона (щебень, гравий и щебень из гравия) в зависимости от крупности зерен подразделяется на четыре фракции, мм: 5—10, 10—20, 20—40 и 40—70.
Допускается применение фракции 3—10 мм вместо фракции 5—10 мм, а также щебня и гравия с размером зерен крупнее 70 мм. Поставка щебня, гравия и щебня из гравия, а также их применение в процессе приготовления бетона допускается в виде смеси двух смежных фракций. В соответствии с действующими стандартами по соглашению сторон крупный заполнитель может поставляться в смеси большего числа фракций, а также фракций 10—15, 5—15 и 15—20 мм.
При приготовлении бетонной смеси соотношение фракций крупного заполнителя в смеси рекомендуется принимать в соответствии с табл. 34.
Таблица 34
Наибольшая крупность щебня (гравия), мм |
Соотношение между фракциями, проц., при размере фракций, мм |
||||
5—10 |
10-20 |
20—40 |
40-70 |
70-120 |
|
10 |
100 |
|
|
|
|
20 |
35 |
65 |
— |
— |
— |
40 |
45- |
‑60 |
40-65 |
— |
— |
80 |
25- |
‑35 |
25—35 |
30-50 |
— |
120 |
15- |
‑25 |
15-25 |
25-35 |
15-45 |
Примечания:I. При необходимости зерновой состав смеси крупного заполнителя
Уточняется экспериментально по наибольшей плотности и объемной насыпной массе с учетом местных технико-экономических возможностей. 2. Для бетона МЗОО рекомендуется рядовой крупный заполнитель (гравий, карбонатный щебень и др.); для М4ОО – улучшенный крупный заполнитель (мытый щебень, щебень из гравия, гравий); для бетона М500 и М600 – высококачественный крупный заполнитель (гранитный и базальтовый щебень, щебень из плотного известняка, доломита и песчаника после опытной проверки); для бетона М600 и выше – особовысококачественный щебень из незатронутых выветриванием прочных изверженных пород с шероховатой поверхностью излома при дроблении (мелкокристаллические граниты и др.).
