- •1.Генетическая классификация горных пород. Влияние условий образования на структуру и свойства горных пород.
- •2.Породообразующие минералы магматических горных пород: химический состав, свойства.
- •3.Магматические горные породы: механизмы образования, особенности строения, минеральный состав, свойства, применение в строительстве.
- •4.Породообразующие минералы осадочных горных пород: химический состав, свойства.
- •6.Метаморфические горные породы: условия образования, особенности строения, минеральный состав, свойства, применение в строительстве.
- •7.Состав, макро- и микроструктура древесины.
- •8.Физико-механические свойства древесины.
- •9. Влажность древесины и её влияние на свойства древесины.
- •10. Глины: условия образования, составы и основные свойства глин.
- •11. Добавки, применяемые в производстве строительной керамики.
- •12. Основы технологии изделий строительной керамики.
- •13. Физико-химические процессы, протекающие в сырье при его обжиге.
- •14. Гипсовые вяжущие вещества: сырье, производство, технические свойства, применение в строительстве.
- •15. Твердение гипсового теста.
- •16. Известь строительная воздушная: сырье, производство, технические свойства, применение в строительстве. Твердение известкового теста.
- •17. Основы технологии портландцемента.
- •18. Минеральный состав портландцементного клинкера, характеристики клинкерных минералов и их влияние на свойства портландцемента.
- •19. Технические свойства портландцемента.
- •20. Твердение цементного теста. Состав и строение цементного камня.
- •21.Коррозия цементного камня и способы замедления процессов разрушения камня.
- •22.Разновидности портландцемента. Быстротвердеющий, сульфатостойкий, белый и цветные.
- •23.Активные минеральные добавки. Смешанные цементы, их свойства и применение в строительстве.
- •25.Определение бетонов и их классификация.
- •26. Состав тяжелого бетона, роль и свойства компонентов тяжелого бетона.
- •27. Алгоритм подбора состава тяжелого бетона.
- •28. Свойства бетонной смеси. Зависимость свойств бетонной смеси от различных факторов.
- •29. Основы технологии тяжелого бетона.
- •30. Свойства тяжелого бетона: пористость, морозостойкость, водонепроницаемость, тепловыделение, усадка и набухание.
- •31. Прочность тяжелого бетона, факторы, влияющие на прочность.
- •32. Легкий бетон на пористых заполнителях: состав, особенности технологии, свойства, применение в строительстве.
- •33. Ячеистые бетоны: классификация, основы технологии, свойства, применение в строительстве
- •34.Строительные растворные смеси : состав, свойства. Сухие растворные смеси
- •35.Строительные растворы: классификации, свойства и методики определений
- •36.Определение битума. Химический и групповой составы, структура битумов
- •37. Основные типы битумов, применяемых в строительстве и их технические свойства.
- •38.Жидкие битумы и битумные эмульсии : состав, применение в строительстве
- •39. Рулонные кровельные и гидроизоляционные материалы на основе битумов.
- •40. Горячие и холодные битумные мастики, их состав и сравнительные характеристики.
- •41. Состав и свойства пластмасс. Их достоинства и недостатки. Разновидности материалов и изделий, получаемых из строительных пластмасс.
- •42. Типы полимеров и наполнителей, используемых в строительных пластмассах.
- •43. Классификация и свойства теплоизоляционных материалов
- •44. Теплоизоляционные материалы, применяемые в современном строительстве и их характеристика.
- •45. Отделочные материалы и их основные компоненты. Свойства лакокрасочных материалов.
- •46. Разновидности красок, применяемых в строительстве
- •47. Методика определения твердости красочных составов.
- •48. Методика определения прочности при ударе красочного покрытия.
- •49.Методика определения средней плотности материалов.
- •50. Методика определения нормальной густоты гипсового вяжущего.
- •51. Методика определения вспучиваемости вермикулита-сырца.
- •52. Методика определения насыпной плотности сыпучих материалов.
- •53. Методика определения скорости высыхания лака.
- •54. Методика определения укрывистости красочного покрытия.
- •55. Методика определения истинной плотности материалов.
- •56.Методика определения водопоглощения материалов.
- •57. Методика определения прочностных характеристик гипсового камня.
- •5 8. Методика определения пористости материалов.
- •60. Метод определения маслоемкости пигмента.
- •61. Методика определения растяжимости битума.
- •62. Методика определения соответствия госТу мелкого заполнителя для тяжелого бетона.
- •63. Методика определения нормальной густоты портландского цемента.
- •64. Методика определения истираемости.
- •65. Методика определения сроков схватывания портландского цемента.
- •66. Методика изготовления стандартных образцов для определения марки цемента.
- •67. Методика определения температуры размягчения битума.
- •68. Методика определения вязкости битума.
- •69. Методика определения прочностных характеристик древесины.
- •70. Методы определения соответствия стандарту крупного заполнителя для тяжелого бетона.
- •71. Методика определения марки керамического кирпича.
44. Теплоизоляционные материалы, применяемые в современном строительстве и их характеристика.
Органические теплоизоляционные материалы: на основе природного органического сырья (древесина, отходы деревообработки, торф, шерсть животных); на основе синтетических смол (пластмассы).
Теплоизоляционные материалы из органического сырья могут быть жесткими и гибкими. К жестким относят древесностружечные, древесноволокнистые, фибролитовые, арболитовые, камышитовые и торфяные. К гибким относятся строительный войлок и гофрированный картон. Древесноволокнистые плиты (на основе синтетического связующего). По плотности их делят на изоляционные (150-250 кг/м3) и изоляционно-отделочные (250-350 кг/м3).Теплопроводность изоляционных плит 0,047-0,07, а изоляционно-отделочных 0,07-0,08 Вт/(м·°С). Предел прочности плит при изгибе составляет 0,4-2 МПа. Древесноволокнистые плиты обладают высокими звукоизоляционными свойствами. Изоляционные и изоляционно-отделочные плиты применяют для тепло- и звукоизоляции стен, потолков, полов, перегородок и перекрытий зданий, акустической изоляции.
Арболит изготовляют из смеси цемента, органических заполнителей, химических добавок и воды. В качестве органических заполнителей используют дробленые отходы древесных пород.
Сырьём для изготовления теплоизоляционных пластмасс служат термопластичные и термореактивные смолы, газообразующие и вспенивающие вещества, наполнители, пластификаторы, красители. В качестве тепло- и звукоизоляционных материалов распространены пластмассы пористо-ячеистой структуры. В зависимости от структуры пластмассы разделяют на: пенопласты и поропласты. Пенопласты – пластмассы с малой плотностью и наличием не сообщающихся между собой полостей или ячеек, заполненных газами или воздухом. Поропласты – пористые пластмассы, структура которых характеризуется сообщающимися между собой полостями.
К неорганическим теплоизоляционным материалам относят минеральную вату, стеклянное волокно, пеностекло, вспученные перлит, вермикулит, асбестосодержащие теплоизоляционные изделия, ячеистые бетоны.
Минеральная вата – рыхлый теплоизоляционный материал, состоящий из тончайших переплетенных минеральных волокон и небольшого количества стекловидных включений, получаемый из силикатных расплавов. Сырьем для ее производства служат горные породы (например известняки), доменные и топливные шлаки. Производство минеральной ваты состоит из двух процессов: получение силикатного расплава и превращение этого расплава в тончайшие волокна. Она огнестойка, не гниет, малогигроскопична и имеет низкую теплопроводность 0,04-0,05 Вт (м.°С). Минеральная вата хрупка, и при ее укладке образуется много пыли. Используют в качестве теплоизоляционной засыпки пустотелых стен и перекрытий.
Стеклянная вата состоит из беспорядочно расположенных стеклянных волокон, полученных из расплавленного сырья. Сырьем для производства стекловаты служит кварцевый песок, кальцинированная сода и сульфат натрия. Стекловолокно получают вытягиванием волокон из стекломассы или распылением стекломассы под действием струи сжатого воздуха. Плотность стеклянной ваты 75-125 кг/м3, теплопроводность 0,04-0,052 Вт/(м/°С), предельная температура применения стеклянной ваты 450°С.
Пеностекло - теплоизоляционный материал ячеистой структуры. Сырьем для производства изделий из пеностекла служит смесь тонкоизмельченного стекла с газообразователем (молотым известняком). Сырьевую смесь засыпают в формы и нагревают в печах до 900°С, при этом происходит плавление частиц. Выделяющиеся газы вспучивают стекломассу, которая при охлаждении превращается в прочный материал ячеистой структуры. Пористость пеностекла 80-95 %,плотность 200-600 кг/м3, теплопроводность 0,09-0,14Вт/(м°С), предел прочности при сжатии пеностекла 2-6МПа. Характеризуется водостойкостью, морозостойкостью, несгораемостью, хорошим звукопоглощением. Пеностекло в виде плит используют для утепления стен, перекрытий, кровель и других частей зданий.
