- •5.Доверительный интервал для генеральной доли.
- •6.Объем выборки, необходимый для оценки генеральной доли.
- •7.Испытание гипотез, процедура испытания гипотез, односторонняя и двусторонняя проверки, статистика.
- •8.Испытание гипотезы на основе выборочной средней при известной генеральной дисперсии.
- •9.Испытание гипотезы на основе выборочной средней при неизвестной генеральной дисперсии.
- •10.Испытание гипотезы на основе выборочной доли.
- •15.Испытание гипотезы по двум выборочным долям.
- •16.Испытание гипотез по спаренным данным (зависимые выборки).
- •17. Непараметрические испытания гипотез. Таблица сопряженности. Критерий Хи-квадрат. Поправка Йетса.
- •18. Простая модель линейной регрессии. Расчет коэффициентов в модели парной линейной регрессии.
- •19. Коэффициент корреляции Пирсона г. Объясненная, необъясненная и общая вариации переменной у. Коэффициент детерминации. Ошибки и остатки.
- •20.Предсказания и прогнозы на основе модели линейной регрессии.
- •21. Основные предпосылки в модели парной линейной регрессии
- •22. Испытание гипотезы для оценки линейности связи на основе оценки коэффициента корреляции в генеральной совокупности.
- •23.Испытание гипотезы для оценки линейности связи на основе оценки показателя наклона линейной регрессии
- •24.Доверительные интервалы в линейном регрессионном анализе. Доверительный интервал для показателя наклона линейной регрессии.
- •26. Доверительный интервал для индивидуальных значений у при заданном значении х.
- •27.Множественная линейная регрессия. Основные предпосылки модели множественной линейной регрессии.
- •28.Расчет коэффициентов множественной линейной регрессии методом наименьших квадратов (мнк).
- •29.Стандартные ошибки коэффициентов в модели множественной линейной регрессии. Стандартная ошибка регрессии.
- •30.Интервальные оценки теоретического уравнения линейной регрессии.
- •31. Проверка статистической значимости коэффициентов уравнения линейной регрессии.
- •32. Проверка общего качества уравнения линейной регрессии. Коэффициент детерминации. Исправленный коэффициент детерминации.
- •33. Проверка равенства двух коэффициентов детерминации.
- •34. Проверка гипотезы о совпадении уравнений регрессии для двух выборок. Тест Чоу.
- •35. Регрессия и Excel.
- •36. Гетероскедастичность, ее последствия. Тест ранговой корреляции Спирмена.
- •37. Тест Голдфелда-Квандта
- •38. Смягчение проблемы гетероскедастичности. Метод взвешенных наименьших квадратов (внк) в случае пропорциональности неизвестных дисперсий отклонений квадратам значений независимой переменной.
- •39 Метод взвешенных наименьших квадратов (внк) в случае пропорциональности неизвестных дисперсий отклонений значениям независимой переменной.
- •41.Критерий Дарбина-Уотсона.
- •42.Мультиколлинеарность и ее последствия. Установление мультикол линеарности. Частные коэффициенты корреляции. Корреляционная матрица. Методы устранения мультиколлинеарности.
- •44.Дисперсионный анализ. Межгрупповая вариация. Внутри групповая вариация. Однофакторный дисперсионный анализ.
- •45.Двухфакторный дисперсионный анализ. Уровни фактора. Двухфакторный дисперсионный анализ без повторений. Двухфакторный дисперсионный анализ с повторениями.
- •46.Временные ряды. Элементы временного ряда (тренд, сезонная вариация, ошибки mad и mse).
- •47. Расчет сезонной вариации в аддитивной модели. Центрированная скользящая средняя.
- •52 Расчет сезонной вариации в мультипликативной модели. Центрированная скользящая средняя
- •53 Прогнозирование в мультипликативной модели
- •54 Экспоненциальное сглаживание. Простая модель экспоненциально го сглаживания. Константа сглаживания.
- •55 Выборочные уравнения регрессии. Линейная корреляция. Корреляционная таблица. Выборочное уравнение прямой линии регрессии у на X.
- •57. Косвенный метод наименьших квадратов
- •58. Методы экспертных оценок. Метод Дельфи. Метод написания сценария. Использование экспертных оценок в аналитической деятельности.
- •59.Анализ временных рядов в Excel.
- •60. Меры связи. Положительная связь. Отрицательная связь. Коэффициент Фехнера (коэффициент корреляции знаков).
- •62. Меры связи на основе критерия хи-квадрат. Коэффициент Крамера. Коэффициент взаимной сопряженности Пирсона. Коэффициент взаимной сопряженности Чупрова.
- •63. Выбор метода прогнозирования.
- •64. Адаптивные методы прогнозирования в экономических исследованиях
- •65. Модели экономического прогнозирования
- •66.Трендовые модели
- •67.Регрессионные модели
- •72 Модель прогнозирования стабильности цен
- •73 Матричные модели прогнозирования
- •74 Модели многомерных классификаций в прогнозных расчетах
- •75 Модель прогнозирования по неполным данным
- •76. Модели сезонных колебаний
- •77)Коэффициент автокорреляции
- •78) Прогноз коэффициентов и показателей в модели динамической регрессии
- •80) Многофакторная регрессионная модель с адаптивным механизмом
- •81Дисперсионное отношение
- •82 Адаптивная многорегрессионная модель
- •83 Расстояние Махаланобиса
- •84 Взвешенное Евклидово расстояние
- •85. Коэффициент ковариации между j и eе показателями
- •86Евклидова метрика
- •87.Модели с аддитивными и мультипликативными составляющими
- •88.Логистическая кривая Перла-Рида
- •89.Кривая Гомпертца
84 Взвешенное Евклидово расстояние
определяется из выражения
Оно применяется в тех случаях, когда каждой l-й компоненте вектора наблюдений Х удается приписать некоторый «вес» ω1, пропорциональный степени важности признака в задаче классификации. Обычно принимают 0 ≤ ωl ≤ 1, где l = 1,2, ..., k.
Определение весов, как правило, связано с дополнительными исследованиями, например с организацией опроса экспертов и обработкой их мнений. Определение весов ωlтолько по данным выборки может привести к ложным выводам.
85Коэффициент ковариации между j и e показателями
Ковариация оценивает силу линейной зависимости между двумя числовыми переменными X и Y. Выборочная ковариация:
Любопытно, что ковариация случайной величины с собой равна дисперсии:
Если ковариация положительна, то с ростом значений одной случайной величины, значения второй имеют тенденцию возрастать, а если знак отрицательный — то убывать. Однако только по абсолютному значению ковариации нельзя судить о том, насколько сильно величины взаимосвязаны, так как её масштаб зависит от их дисперсий.
Показатель ковариации определяется по формуле: Соvij = ∑ (R доходность i-й акции - R средняя доходность i-й акции) × (R доходность j-й акции - R средняя доходность j-й акции) / n - 1, где n - число периодов, за которые рассчитывалась доходность i-й и j-й акций.
85. Коэффициент ковариации между j и eе показателями
Ковариация представляет собой математическое ожидание произведения центрированных случайных величин X иY и характеризует степень линейной статистической зависимости величин X и Y и рассеивание относительно точки (mx, my):
Kxy =
,
(11.9)
Или
(11.10)
Расчетные формулы для определения ковариации:
(11.11)
86Евклидова метрика
Евклидова метрика — геометрическое расстояние между двумя точками в многомерном пространстве, вычисляемое по теореме Пифагора.
Евклидова
дистанция между
точками p и q это
длина отрезка
.
В Декартовых
координатах,
если p = (p1, p2,…, pn)
и q = (q1, q2,…, qn)
две точки в Евклидовом
пространстве,
длина отрезка p q равна:
87.Модели с аддитивными и мультипликативными составляющими
В зависимости от характера сезонных колебаний различают два вида моделей – аддитивная и мультипликативная.
По аддитивной модели временной ряд с сезонными колебаниями представляется в виде:
где:
-
значение прогнозируемой переменной
для
-го
момента времени;
-
трендовая составляющая
;
-
сезонная составляющая
;
-
случайная ошибка.
По мультипликативной модели временной ряд с сезонными колебаниями имеет в вид:
Для решения вопроса о том какая из рассматриваемых моделей должна быть выбрана для конкретного временного ряда, необходимо построить график изменения прогнозируемой величины во времени и проанализировать изменение амплитуды сезонных колебаний (Рис.16.). В случае если амплитуда сезонных колебаний не имеет ярко выраженной тенденции к изменению во времени, то тогда может быть выбрана аддитивная модель (a), в противном случае предпочтительна мультипликативная (б).
Рис 16. Временные ряды, характерные для аддитивной (а) и мультипликативной(б)моделей.
